Skip to main content
Log in

Effect of different dopants on the structural and physical properties of In2S3 thin films: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Indium sulfide (In2S3) is a fundamental material for optoelectronic and photovoltaic applications and a promising candidate for many technological applications because of its chemical stability, wide band gap energy, and photoconductive behavior. Indium sulfide films have been doped with various substances to enhance the high resistivity that is typically present in as-deposited In2S3 thin films. It depends on the value of the impurity concentration as a dopant, the structural, electrical, and optical characteristics of In2S3 thin films, such as crystal structure, crystallite size, morphology, surface roughness, band gap, dc conductance, resistivity, and transmittance characteristics, are influenced. The opto-electrical properties of In2S3 thin films can be modified by doping of different lanthanide or transition metals. The effects of various impurities incorporated in the physical properties of In2S3 are discussed and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. He D, Li G, Xiao W, Chen Y, Chen M, Sun M, Huang H, Fu X (2009) J Phys Chem C 113:5254–5262

    Article  CAS  Google Scholar 

  2. Fu X, Wang X, Chen Z, Zhang Z, Li Z, Leung DYC, Wu L, Fu X (2010) Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Appl Catal B 95:393–399. https://doi.org/10.1016/j.apcatb.2010.01.018

    Article  CAS  Google Scholar 

  3. Souissi R, Bouguila N, Labidi A (2018) Ethanol sensing properties of sprayed Β-In2S3 thin films. Sens Actuators B 261:522–530. https://doi.org/10.1016/j.snb.2018.01.175

    Article  CAS  Google Scholar 

  4. Hara K, Sayama K, Arakawa H (2000) Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes. Sol Energy Mater Sol Cells 62(2000):441–447. https://doi.org/10.1016/S0927-0248(00)00027-1

    Article  CAS  Google Scholar 

  5. Choe SH, Bang TH, Kim NO, Kim HG, Lee CI, Jin MS, Oh SK, Kim WT (2001) Optical properties of β-In2S3 and β-In2S3:Co2+ single crystals. Semicond Sci Technol 16(2001):98–102. https://doi.org/10.1088/0268-1242/16/2/307

    Article  CAS  Google Scholar 

  6. Robles R, Barreau N, Vega A, Marsillac S, Bernède JC, Mokrani A (2005) Optical properties of large band gap β-In2S3− 3xO3x compounds obtained by physical vapour deposition. Opt Mater 27(4):647–653

    Article  CAS  Google Scholar 

  7. Zhong ZY, Cho ES, Kwon SJ (2013) Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu(In, Ga)Se2 solar cells. Thin Solid Films 547:22–27

    Article  CAS  Google Scholar 

  8. Barreau N, Bernède JC, Marsillac S, Amory C, Shafarman WN (2003) New Cd-free buffer layer deposited by PVD: In2S3 containing Na compounds. Thin Solid Films 431–432:326–329

    Article  Google Scholar 

  9. Pulipaka S, Koushik AK, Deepa M, Meduri P (2019) Enhanced photoelectrochemical activity of Co-doped β-In 2 S 3 nanoflakes as photoanodes for water splitting. RSC Adv 3:1335–1340

    Article  Google Scholar 

  10. Timoumi A, Belhadj W, Alamri S, Al Turkestani M (2021) Experimental studies and new theoretical modeling on the properties of In2S3 thin films. Opt Mater 118:111–238

    Article  Google Scholar 

  11. Kraini M, Bouguila N, Moutia N, El Ghoul J, Khirouni K, V´azquez-V´azquez C (2018) Properties of nickel doped In2S3 thin films deposited by spray pyrolysis technique. J Mater Sci Mater Electron 29:1888–1906

    Article  CAS  Google Scholar 

  12. Saadallah F, Jebbari N, Kammoun N, Yacoubi N (2017) Optical and thermal properties of In2S3. J Colloid Interface Sci 491:1–4

    Google Scholar 

  13. Cingarapu S, Ikenberry MA, Hamal DB, Sorensen CM, Hohn K, Klabunde KJ (2012) Langmuir 28:3569

    Article  CAS  Google Scholar 

  14. Yan LL, Ling YJ, Ying CS, Min LP (2015) Chin Phys B 24:078103

    Article  Google Scholar 

  15. Sall T, Fahoume M, Mari B, Mollar M (2014) In 2014 International renewable and sustainable energy conference (IRSEC) (IEEE), pp 667–671

  16. Maha MHZ, Mohagheghi MMB, Juybari HA (2013) Thin Solid Films 536:57

    Article  Google Scholar 

  17. Mathew M, Gopinath M, Kartha CS, Vijayakumar KP, Kashiwaba Y, Abe T (2010) Doping in spray pyrolysed indium sulfide thin films for solar cell applications, Solar Energy, 84 pp 888–897

  18. Momma K, Izumi F (2008) J Appl Crystallogr 41:653

    Article  CAS  Google Scholar 

  19. Becker RS, Zheng T, Elton J, Saeki M (1986) Sol Energy Mater 13:97

    Article  CAS  Google Scholar 

  20. de Moure-Flores F, Nieto-Zepeda KE, Guillén-Cervantes A, Gallardo S, Quiñones-Galván JG, Hernández-Hernández A, Olvera MD, Zapata-Torres M, Kundriavtsev Y, Meléndez-Lira M (2013) Effect of the immersion in CdCl2 and annealing on physical properties of CdS: F films grown by CBD. J Phys Chem Solids 74(4):611–615

    Article  Google Scholar 

  21. Mathew M, Jayakrishnan R, Kumar PMR, Kartha CS, Vijayakumar KP (2006) J Appl Phys 100:0335041–0335048

    Google Scholar 

  22. Rehwald M, Harbeke G (1965) J Phys Chem Solids 26:1309

    Article  CAS  Google Scholar 

  23. Yang S, Xu C, Zhang B, Yang L, Hu S, Zhen L (2016) Ca(II) doped β-In2S3 hierarchical structures for photocatalytic hydrogen generation and organic dye degradation under visible light irradiation. J Colloid Interface Sci 491:230–237

    Article  Google Scholar 

  24. Chen YX, Yamamoto A, Takeuchi T (2017) Doping effects of Mg for in on the thermoelectric properties of β-In2S3 bulk samples. J Alloy Comp 771:60–66

    Google Scholar 

  25. Tiss B, Erouel M, Bouguila N, Kraini M, Khirouni K (2019) Effect of silver doping on structural and optical properties of In2S3 thin films fabricated by chemical pyrolysis. J Alloy Comp 771:60–66

    Article  CAS  Google Scholar 

  26. Esmaili P, Kangarlou H, Ghorannevis M (2019) Surface modification and optical properties of metal doped indium sulfide thin films. Opt Quant Electron 51:260

    Article  Google Scholar 

  27. Al-Douri Y, Odeh AA, Ibraheam AS (2020) Transition metals doped In2S3 nanostructure: structural and optical Features. Mater Res Express. 6(12):125914

    Article  Google Scholar 

  28. Lin P, Lin S, Cheng S, JingMa YL, Zhou H, Jia H (2014) Optical and electrical properties of Ag-doped In2S3 thin films prepared by thermal evaporation. Adv Mater Sci Eng. https://doi.org/10.1155/2014/370861

    Article  Google Scholar 

  29. Tiss B, Fradj AB, Bouguila N, Cristea D, Croitoru C, Kraini M, Vázquez-Vázquez C, Cunha L, Moura C, Alaya S (2021) Electrical behavior and photocatalytic activity of Ag-Doped In 2 S 3 thin films. J Electron Mater 50:3739–3747

    Article  CAS  Google Scholar 

  30. Aydin E, Sankir M (2014) Nurdan Demirci Sankir, Influence of silver incorporation on the structural, optical and electrical properties of spray pyrolyzed indium sulfide thin films. J Alloy Compd 603:119–124

    Article  CAS  Google Scholar 

  31. Tiss B, Erouel M, Bouguila N, Kraini M, Khirouni K (2018) Effect of silver doping on structural and optical properties of In2S3 thin films fabricated by chemical pyrolysis. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2018.08.125

    Article  Google Scholar 

  32. Tiss B, Moualhi Y, Bouguila N, Erouel M, Kraini M, Alaya S, Aouida S, Vázquez-Vázquez C, Moura C, Cunha L (2021) Influence of silver doping on physical properties of sprayed In 2 S 3 films for solar cells application. J Mater Sci Mater Electron 32:4568–4580

    Article  CAS  Google Scholar 

  33. Esmaili P, Kangarlou H, Savaloni H, Ghorannevis M (2017) Structural, optical and electronic properties of indium sulfide compositions under influence of copper impurity produced by chemical method. Res Phys 7:3380–3389

    Google Scholar 

  34. Ebrahiminejad Z, Asgary S, Esmaili P (2022) Surface characterization of Cu-doped indium sulfide thin films. Indian J Phys. https://doi.org/10.1007/s12648-021-02044-x

    Article  Google Scholar 

  35. Alamoudi E, Timoumi A (2022) The synthesis and the effect of Cu on optoelectronic qualities of β-In2S3 as a window layer for CIGS thin film solar cells. Res Phys 40:105858. https://doi.org/10.21203/rs.3.rs-1695985/v1

    Article  Google Scholar 

  36. Zheng Z, Yu J, Cheng S, Lai Y, Zheng Q, Pan D (2016) Investigation of structural, optical and electrical properties of Cu doped β-In 2 S 3 thin films. J Mater Sci Mater Electron 27:5810–5817. https://doi.org/10.1007/s10854-016-4496-3

    Article  CAS  Google Scholar 

  37. Kaleel SG, Suhail MH, Yasser FM (2014) Spray deposition of Cu: In2S3 thin films. Int J Emerg Technol Adv Eng 4:613–622

    Google Scholar 

  38. Ai S, Zeng H, Chai Y, Yuan R, Liu H (2021) Cu-doped In2S3 based DNA nanocluster for ultrasensitive photoelectrochemical detection of VEGF165. Sens Actuators B Chem 340:129942

    Article  CAS  Google Scholar 

  39. Ghorbani E, Albe K (2018) Influence of Cu and Na incorporation on the thermodynamic stability and electronic properties of β-In 2 S 3. J Mater Chem C 6(27):7226–7231. https://doi.org/10.1039/c8tc01341a

    Article  CAS  Google Scholar 

  40. Alamoudi E, Timoumi A (2022) The synthesis and the effect of Cu on optoelectronic qualities of β-In2S3 as a window layer for CIGS thin film solar cells. Res Phys 40:105858

    Google Scholar 

  41. Timoumi A, Belhadj W, Alamri SN, Al-Turkestani MK (2021) Physical and dielectric properties of Ni-doped in2s3 powders for optical windows in thin film solar cells. Materials 14(19):5779

    Article  CAS  Google Scholar 

  42. Göde F, Ünlü S (2018) Nickel doping effect on the structural and optical properties of indium sulfide thin films by SILAR. Open Chem 16:757–762

    Article  Google Scholar 

  43. Timoumi A, Bouzouita H, Rezig B (2011) Optical constants of Na–In2S3 thin films prepared by vacuum thermal evaporation technique. Thin Solid Films 519:7615–7619

    Article  CAS  Google Scholar 

  44. Kilani M, Guasch C, Castagné M, Kamoun-Turki N (2012) Structural, optical, and electrical properties of In 2 S 3: Sn thin films grown by chemical bath deposition on Pyrex. J Mater Sci 47:3198–3203. https://doi.org/10.1088/1674-4926/37/3/032001

    Article  CAS  Google Scholar 

  45. Lin L-Y, Jin-Ling Yu, Cheng S-Y, Pei-Min Lu (2015) Influence of Ag and Sn incorporation in In2S3 thin films. Chinese Phys B 24:078103

    Article  Google Scholar 

  46. Kraini M, Bouguila N, El Ghoul J, Halidou I, Gomez-Lopera SA, Vázquez-Vázquez C, López-Quintela MA, Alaya S (2015) Influence of annealing temperature on the properties of In 2S3: Sn films deposited by spray pyrolysis. J Mater Sci Mater Electron 26:5774–5782

    Article  CAS  Google Scholar 

  47. Kraini M, Bouguila N, Koaib J, Vázquez-Vázquez C, López-Quintela MA, Alaya S (2016) Experiments on In 2 S 3: Sn thin films with up to 1% tin content. J Electron Mater 45:5936–5947. https://doi.org/10.1007/s11664-016-4823-8

    Article  CAS  Google Scholar 

  48. Kraini M, Bouguila N, Halidou I, Moadhen A, Vázquez-Vázquez C, López-Quintela MA, Alaya S (2015) Study of optical and electrical properties of In 2 S 3: Sn films deposited by spray pyrolysis. J Electron Mater 44:2536–2543

    Article  CAS  Google Scholar 

  49. Bouguila N, Kraini M, Koaib J, Halidou I, Vazquez-Vazquez C, López-Quintela MA, Alaya S (2019) Properties of low-level Sn-doped In2S3 films deposited by spray pyrolysis technique. Surf Rev Lett 26(01):1850126

    Article  CAS  Google Scholar 

  50. Maha MH, Bagheri-Mohagheghi MM, Azimi-Juybari H (2013) Tin doped β-In2S3 thin films prepared by spray pyrolysis: correlation between structural, electrical, optical, thermoelectric and photoconductive properties. Thin Solid Films 536:57–62

    Article  Google Scholar 

  51. Rodríguez-Hernández PE, Quiñones-Galván JG, Marasamy L, Morales-Luna M, Santos-Cruz J, Arias-Cerón JS, Zelaya-Angel O, de Moure-Flores F (2019) Optoelectronic properties of undoped and Al, B and Ga-doped In2S3 thin films grown by CBD on flexible PET/ITO substrates. Mater Sci Semicond Process 103:104600

    Article  Google Scholar 

  52. Kilani M, Yahmadi B, Kamoun Turki N, Castagné M (2011) Effect of Al doping and deposition runs on structural and optical properties of In 2 S 3 thin films grown by CBD. J Mater Sci 46:6293–6300. https://doi.org/10.1007/s10853-011-5521-9

    Article  CAS  Google Scholar 

  53. Ajili M, Kamoun NT (2021) Structural and optoelectronic studies of CuO, In2-xAlxS3 and SnO2: F sprayed thin films for solar cell application: Au/CuO (p)/In2-xAlxS3 (n)/SnO2: F. Optik 229:166222

    Article  CAS  Google Scholar 

  54. Esmailia P, Asgary S (2021) Al3+ doped In2S3 thin films: structural and optical characterization. Russ J Inorg Chem 66:621–628

    Article  Google Scholar 

  55. Akkari A, Guasch C, Castagne M, Kamoun-Turki N (2011) Optical study of zinc blend SnS and cubic In2S3: Al thin films prepared by chemical bath deposition. J Mater Sci 46:6285–6292. https://doi.org/10.1007/s10853-011-5626-1

    Article  CAS  Google Scholar 

  56. Kilani M, Yahmadi B, Turki NK, Castagné M (2011) J Mater Sci 46:6293. https://doi.org/10.1007/s11664-016-4823-8

    Article  CAS  Google Scholar 

  57. Kamoun N, Belgacem S, Amlouk M, Bennaceur R, Bonnet J, Touhari F, Nouaoura M, Lassabatere L (2001) J Appl Phys 89:2766

    Article  CAS  Google Scholar 

  58. Toumi M, Bouguila N, Souissi R, Tissa B, Kraini M, Alaya S (2020) Impact of chlorine doping on structural, optical and photoconductive properties of sprayed In2S3 thin layers. Opt Int J Light Electron Opt 217:164896

    Article  CAS  Google Scholar 

  59. Toumi M, Bouguila N, Tiss B, Dias C, Veloso RC, Kraini M, Ventura J, Alaya S (2022) Effect of chlorine doping on some physical properties of annealed In2S3 thin layers deposited by spray technique. Solid State Sci 133:107021

    Article  CAS  Google Scholar 

  60. Ghorbani E, Albe K (2018) Role of oxygen and chlorine impurities in β-In2S3: a first-principles study. Phys Rev B 98:205201

    Article  Google Scholar 

  61. Datta A, Gorai S, Chaudhuri S (2006) Synthesis and characterization of sol-gel derived Mn2+ doped In2S3 nanocrystallites embedded in a silica matrix. J Nanopart Res 8:919–926

    Article  CAS  Google Scholar 

  62. Jawinski T, Lorenz M, Scheer R, Grundmann M (2020) Properties of epitaxially grown In2S3:V thin films for intermediate band solar cell application, Central Michigan University. Downloaded on, 2021 at 11:21:54 UTC from IEEE Xplore

  63. McCarthy RF, Weimer MS, Haasch RT, Schaller RD, Hock AS, Martinson AB (2016) VxIn (2–x) S3 Intermediate band absorbers deposited by atomic layer deposition. Chem Mater 28(7):2033–2040

    Article  CAS  Google Scholar 

  64. Wägele LA, Rata D, Gurieva G, Scheer R (2017) Structural analysis of co-evaporated In2S3 and In2S3: V for solar cell absorber applications. Phys Status Solidi C 14(6):1600204

    Article  Google Scholar 

  65. Liu Y, Zhai C, Zhang K, Du L, Zhu M, Zhang M (2020) Origin of ferromagnetism in Sm-doped In2S3 nanoparticles: experimental and theoretical insights. J Magn Magn Mater 503:166618

    Article  CAS  Google Scholar 

  66. Ghosh S, Saha M, Ashok VD, Chatterjee A, De SK (2016) Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots. Nanotechnology 27(15):155708

    Article  Google Scholar 

  67. Ghorbani E, Barragan-Yani D, Albe K (2020) Towards intermediate-band photovoltaic absorbers: theoretical insights on the incorporation of Ti and Nb in In2S3. NPJ Comput Mater 6(1):93

    Article  CAS  Google Scholar 

  68. Li Q, Wang J, Cheng Y, Chen L, Liu X, Zhang W, Sun Q, Fan J, Miao H, Xi Hu (2021) A novel Yb3+/Tm3+ co-doped semiconductor sensitized up-conversion strategy for β-In2S3 photoanode with enhanced photoelectrochemical properties. J Alloys Compd 869:159319

    Article  CAS  Google Scholar 

  69. Wu Z, Yuan X, Zeng G, Jiang L, Zhong H, Xie Y, Wang H, Chen X, Wang H (2018) Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation. Appl Catal B Environ 225:8–21. https://doi.org/10.1016/j.apcatb.2017.11.040

    Article  CAS  Google Scholar 

  70. Datta A, Ganguli D, Chaudhuri S (2008) Hydrothermal synthesis of Co-doped In2S3 micropompons and their physical properties. J Mater Res 4:917–923

    Article  Google Scholar 

  71. Choe SH, Bang TH, Kim NO, Kim HG, Lee ChI, Jin MS, Oh SK, Kim WT (2022) Optical properties of β-In2S3 and β-In2S3:Co2+ single crystals. Semicond Sci Technol 16:98

    Article  Google Scholar 

  72. Barreau N, Bernede JC, Deudon C, Brohan L, Marsillac S (2002) Study of the new β-In2S3 containing Na thin films. Part II: optical and electrical characterization of thin films. J Cryst Growth 241:51–56

    Article  CAS  Google Scholar 

  73. Gunavathy KV, Vinoth S, Isaac RR, Prakash B, Valanarasu S, Trabelsi AB, Shkir M, AlFaify S (2023) Highly improved photo-sensing ability of In2S3 thin films through cerium doping. Opt Mater 137:113612

    Article  CAS  Google Scholar 

  74. Alagarasan D, Hegde SS, Kumar A, Shanmugavelu B, Murahari P, Ganesan R, Shetty H, Naik R, Ubaidullah M, Gupta M, Pandit B, Senthilkumar N, Sehgal SS (2023) Influence of La3+ doping on nebulizer spray pyrolysed In2S3 thin film for enhanced photodetector performance. J Photochem Photobiol A 444:114941

    Article  CAS  Google Scholar 

  75. Wang L, Xia L, Wu Y, Tian Y (2016) Zr-Doped β-In2S3 Ultrathin nanoflakes as photoanodes: enhanced visible-light-driven photoelectrochemical water splitting. ACS Sustain Chem Eng 4:2606–2614

    Article  CAS  Google Scholar 

  76. Rajeshmon VG, Poornima N, Sudha Kartha C, Vijayakumar KP (2013) Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell. J Alloy Compd 553:239–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the laboratory co-workers in Azad University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article.

Corresponding author

Correspondence to Somayeh Asgary.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Data availability

We use no code for this manuscript. The datasets analyzed during the current study are reported from other scientist.

Ethical approval

No human or animal tissue tests have been used in this article.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf Salman, M., Asgary, S. & Tehrani-Nasab, S. Effect of different dopants on the structural and physical properties of In2S3 thin films: a review. J Mater Sci 58, 12143–12157 (2023). https://doi.org/10.1007/s10853-023-08777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08777-w

Navigation