Skip to main content
Log in

Poisson’s ratio determination of Au nanofilms by piezoresistive measurements

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A methodology for determining the Poisson’s ratio (ν) of Au films with nanometric thicknesses is proposed. Au films with thicknesses of 10, 20, and 40 nm were thermally evaporated onto polyimide substrates (Kapton® 300HN) and electrodes were attached for the electrical measurements. The thermal coefficient of resistance of the Au films was estimated at the first stage of heating, caused by Joule effect, where electrical resistance and temperature followed a linear dependence. When thermal stabilization of the Au/polyimide system was reached, it was subjected to axial strain within an elastic regime and the electrical resistance of the metallic film was continuously recorded. The gage factor (piezoresistive sensitivity) of the Au nanofilms was measured and used for the estimation of the Poisson’s ratio according to its definition for metallic materials. A value of ν = 0.50 was estimated for the Au thin films, being slightly higher than the Au bulk value (νbulk = 0.42).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pleus RC, Murashov V (2018) Physicochemical properties of nanomaterials. Pan Stanford Publishing, Singapore

    Book  Google Scholar 

  2. Zhang W, Hu Y, Zhang G, Wang Z (2017) Formation of nanoscale metallic glassy particle reinforced Al-based composite powders by high-energy milling. Metals 7:425. https://doi.org/10.3390/met7100425

    Article  CAS  Google Scholar 

  3. Di Cio S, Gautrot JE (2016) Cell sensing of physical properties at the nanoscale: mechanisms and control of cell adhesion and phenotype. Acta Biomater 30:26–48. https://doi.org/10.1016/j.actbio.2015.11.027

    Article  CAS  Google Scholar 

  4. Jellinek J, Jackson KA (2018) Universality on side-driven evolution towards bulk polarizability of metals. Nanoscale 10:17534–17539. https://doi.org/10.1039/c8nr06307a

    Article  CAS  Google Scholar 

  5. Bhatt S, Kumar R, Kumar M (2017) Specific heat and thermal conductivity of nanomaterials. Mod Phys Lett B 31:1750011. https://doi.org/10.1142/S0217984917500117

    Article  CAS  Google Scholar 

  6. Malhotra A, Kothari K, Maldovan M (2018) Enhancing thermal transport in layer nanomaterials. Sci Rep 8:1880. https://doi.org/10.1038/s41598-018-20183-w

    Article  CAS  Google Scholar 

  7. Han L, Zhao Y-X, Liu C-M, Li L-H, Liang X-J, Wei Y (2014) The effects of nanoparticle shape on electrical conductivity of Ag nanomaterials. J Mater Sci Mater Electron 25:3870–3877. https://doi.org/10.1007/s10854-014-2101-1

    Article  CAS  Google Scholar 

  8. Chen Y, Gao Q, Wang Y, An X, Liao X, Mai Y-W, Tan HH, Zou J et al (2015) Determination of Young´s modulus of ultrathin nanomaterials. Nano Lett 15:5279–5283. https://doi.org/10.1021/acs.nanolett.5b01603

    Article  CAS  Google Scholar 

  9. Oliva AI, Lugo JM, Gurubel RA, Centeno-Santana R, Corona JE, Avilés F (2017) Thermal coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films. Thin Solid Films 623:84–89. https://doi.org/10.1016/j.tsf.2016.12.028

    Article  CAS  Google Scholar 

  10. Kobayashi AS (1993) Handbook on experimental mechanics. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  11. Ajovalasit A, D’Acquisto L, Fragapane S, Zuccarello B (2007) Stiffness and reinforcement effect of electrical resistance strain gauges. Strain 43:299–305. https://doi.org/10.1111/j.1475-1305.2007.00354.x

    Article  Google Scholar 

  12. Stehlin P (1972) Strain distribution in and around strain gauges. J Strain Anal 7:228–235. https://doi.org/10.1243/03093247V073228

    Article  Google Scholar 

  13. Standard ASTM E132 (2017). Standard test method for Poisson´s ratio at room temperature.

  14. Kang D-J, Chen F, Park J-H (2014) New measurement method for Poisson´s ratio of thin films by applying digital image correlation technique. Int J Precis Eng Man 15:883–888. https://doi.org/10.1007/s12541-014-0412-z

    Article  Google Scholar 

  15. Mohr M, Caron A, Herbeck-Engel P, Bennewitz R, Gluche P, Bruhne K, Fecht H-J (2014) Young´s module, fracture strength, and Poisson´s ratio of nanocrystalline diamond films. J App Phys 116:124308. https://doi.org/10.1063/1.4896729

    Article  CAS  Google Scholar 

  16. Namazu T, Fujii T, Takahashi M, Tanaka M, Inoue S (2013) A simple experimental technique for measuring the Poisson´s ratio of microstructures. J Microelectromech Syst 22:625–636. https://doi.org/10.1109/JMEMS.2012.2237383

    Article  CAS  Google Scholar 

  17. Lee J-H, Lee S-S, Chang J-D, Thomson M-S, Kang D-J, Park S, Park S (2013) A novel method for the accurate evaluation of Poisson´s ratio for soft polymer materials. Sci World J 930798. https://doi.org/10.1155/2013/930798

    Article  Google Scholar 

  18. Kim H, Yoo L, Shin A, Demer JL (2013) Determination of Poisson ratio of bovine extraocular nuscle by computed x-ray tomography. Biomed Res Int 197479. https://doi.org/10.1155/2013/197479

    Article  Google Scholar 

  19. McCarthy EK, Bellew AT, Sader JE, Boland JJ (2014) Poisson´s ratio of individual metal nanowires. Nat Commun 5:4336. https://doi.org/10.1038/ncomms5336

    Article  CAS  Google Scholar 

  20. https://inficon.com/en/products/thin-film-technology

  21. https://www.agilent.com/en/product/vacuum-technologies/turbo-pumps-controllers/turbo-pumps.

  22. Lugo JM, Rejón V, Oliva AI (2015) Specific heat determination of metallic thin films at room conditions. J Heat Transfer 137:051601, 1-11. https://doi.org/10.1115/1.4029595

    Article  CAS  Google Scholar 

  23. Corona JE, Maldonado RD, Oliva AI (2007) Vacuum oven to control the annealing process in alloyed nanolayers. Rev Mex Fis 53:318–322

    CAS  Google Scholar 

  24. Keithley JK (1998) Low Level Measurements, 5th ed., Keithley Instruments, Cleveland, OH.

  25. Oliva AI, Ruiz-Tabasco L, Ojeda-García J, Corona JE, Sosa V, Avilés F (2019) Effects of temperature and tensile strain on the electrical resistance of nanometric gold films. Mater Res Express 6:066407. https://doi.org/10.1088/2053-1591/ab0c43

    Article  CAS  Google Scholar 

  26. Huerta E, Corona JE, Oliva AI, Avilés F, González J (2010) Universal testing machine for mechanical properties of thin metallic films. Rev Mex Fis 56:317–322

    Google Scholar 

  27. López Puerto A, Avilés F, Gamboa F, Oliva AI (2014) A vibrational approach to determine the elastic modulus of individual thin films in multilayers. Thin Solid Films 565:228–236. https://doi.org/10.1016/j.tsf.2014.06.024

    Article  CAS  Google Scholar 

  28. Oliva AI, Lugo JM (2016) Measurement of the temperature coefficient of resistance in metallic films with nano-thickness. Int J Thermophys 37:1–10. https://doi.org/10.1007/s10765-016-2046-0

    Article  CAS  Google Scholar 

  29. Noel JG (2016) Review of the properties of the fold materials for MEM´s membranes applications. IET Circuits Devices Syst 10:156–161. https://doi.org/10.1049/iet-cds.2015.0094

    Article  Google Scholar 

  30. Leonard WF, Ramey RL (1966) Temperature coefficient of resistance in thin metal films. J Appl Phys 37:3634–3635. https://doi.org/10.1063/1.1708921

    Article  CAS  Google Scholar 

  31. Fuchs K, Mott NF (1938) The conductivity of thin metallic films according to the electron theory of metals. Proc Camb Philos Soc 34:100–108. https://doi.org/10.1017/S0305004100019952

    Article  CAS  Google Scholar 

  32. Sondheimer EH (1952) The means free path of electrons in metals. Adv Phys 1:1–42. https://doi.org/10.1080/00018735200101151

    Article  Google Scholar 

  33. Mayadas AF, Shatzkes M (1970) Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys Rev B 1:1382–1389. https://doi.org/10.1103/PhysRevB.1.1382

    Article  Google Scholar 

  34. Tellier CR, Tosser AJ (1982) Size effects in thin films. Thin films science and technology. Elsevier, New York

    Google Scholar 

  35. Camacho JM, Oliva AI (2006) Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms. Thin Solids Films 515:1881–1885. https://doi.org/10.1016/j.tsf.2006.07.024

    Article  CAS  Google Scholar 

  36. Lee SJ, Han SW, Hyun SM, Lee HJ, Kim JH, Kim YI (2009) Measurement of Young’s modulus and Poisson’s ratio for thin Au films using a visual image tracing system. Curr Appl Phys 9:S75–S78. https://doi.org/10.1016/j.cap.2008.08.048

    Article  Google Scholar 

  37. Lührs L, Soyarslan C, Markmann J, Bargmann S, Weissmüller J (2016) Elastic and plastic Poisson’s ratios of nanoporous gold. Scripta Mater 110:65–69. https://doi.org/10.1016/j.scriptamat.2015.08.002

    Article  CAS  Google Scholar 

  38. Renault PO, Badawi KF, Bimbault L, Goudeau P, Elkaim E, Lauriat JP (1998) Poisson’s ratio measurement in tungsten thin films combining an x-ray diffractometer with in situ tensile tester. Appl Phys Lett 73:1952–1954. https://doi.org/10.1063/1.122332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thanks to Mauricio Romero and Emilio Corona for the technical assistance.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and experimental tests were carried out by GGC-R. Data analysis and discussion was performed by AIO, VS and AIO-A. The first draft of the manuscript was written by AIO-A and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. I. Oliva-Avilés.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interests nor relevant financial or non-financial interests exist.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, A.I., Comparán-Rodriguez, G.G., Sosa, V. et al. Poisson’s ratio determination of Au nanofilms by piezoresistive measurements. J Mater Sci 58, 8563–8571 (2023). https://doi.org/10.1007/s10853-023-08536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08536-x

Navigation