Skip to main content

Mapping the Stiffness of Nanomaterials and Thin Films by Acoustic AFM Techniques

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

The determination of the stiffness of nanomaterials is essential to understanding their response to force and for the successful integration of these materials into devices. In this chapter we review acoustic atomic force microscope (AFM) techniques that are used to map the stiffness distribution of nanomaterials and thin films nondestructively and with high lateral resolution. We focus on three acoustic AFM techniques: force modulation microscopy (FMM), ultrasonic force microscopy (UFM), and contact resonance atomic force microscopy (CR-AFM). We explain the basics of the AFM tip–surface contact mechanics, the theoretical background of each acoustic AFM method, its use to determine the stiffness properties of nanomaterials and thin films, and its limitation. The techniques we discuss have been used to characterize the mechanical properties of a broad range of nanomaterials and thin films, including self-assembled monolayers, thin polymer films, nanocomposites, and biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6(3):153–161

    Google Scholar 

  2. Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39(7):2643–2666

    Google Scholar 

  3. Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Comm 3:770–776

    Google Scholar 

  4. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9(12):1015–1022

    Google Scholar 

  5. Kim DK, Lai YM, Diroll BT, Murray CB, Kagan CR (2012) Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat Comm 3:1216–1225

    Google Scholar 

  6. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Google Scholar 

  7. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nature Mater 9(2):101–113

    Google Scholar 

  8. Menke M, Künneke S, Janshoff A (2002) Lateral organization of G M1 in phase-separated monolayers visualized by scanning force microscopy. Eur Biophys J 31(4):317–322

    Google Scholar 

  9. Pan J, Tristram-Nagle S, Nagle JF (2009) Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E 80(2):021931-12

    Google Scholar 

  10. Picas L, Rico F, Scheuring S (2012) Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys J 102(1):L01–L03

    Google Scholar 

  11. Binnig G, Quate CF, Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56(9):930–933

    Google Scholar 

  12. Yaralioglu GG, Atalar A, Manalis SR, Quate CF (1998) Analysis and design of an interdigital cantilever as a displacement sensor. J Appl Phys 83(12):7405–7415

    Google Scholar 

  13. Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55(25):2588–2590

    Google Scholar 

  14. Kim YS, Nam HJ, Cho SM, Hong JW, Kim DC, Bu JU (2003) PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM. Sensor Actuat a-Phys 103(1–2):122–129

    Google Scholar 

  15. Karagiannidis P, Kassavetis S, Pitsalidis C, Logothetidis S (2011) Thermal annealing effect on the nanomechanical properties and structure of P3HT:PCBM thin films. Thin Solid Films 519(12):4105–4109

    Google Scholar 

  16. Killgore JP, Yablon DG, Tsou AH, Gannepalli A, Yuya PA, Turner JA, Proksch R, Hurley DC (2011) Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27(23):13983–13987

    Google Scholar 

  17. Schön P, Bagdi K, Molnár K, Markus P, Pukánszky B, Julius Vancso G (2011) Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM. Eur Polym J 47(4):692–698

    Google Scholar 

  18. Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B ( 2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69(16):165410-1–165410-5

    Google Scholar 

  19. Rabe U, Kester E, Arnold W (1999) Probing linear and non-linear tip-sample interaction forces by atomic force acoustic microscopy. Surf Interface Anal 27(5–6):386–391

    Google Scholar 

  20. Yamanaka K, Ogiso H, Kolosov O (1994) Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl Phys Lett 64(2):178–180

    Google Scholar 

  21. Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2(2):103–106

    Google Scholar 

  22. Tsuji T, Yamanaka K (2001) Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite. Nanotechnology 12(3):301–307

    Google Scholar 

  23. Bhushan B (2005) Nanotribology, Nanomechanics, and Material Characterization. Nanotribology and nanomechanics: an introduction, vol xxviii. Springer, Berlin, 1148 p

    Google Scholar 

  24. Prokopovich P, Perni S (2011) Comparison of JKR-and DMT-based multi-asperity adhesion model: Theory and experiment. Colloid Surf A 383(1):95–101

    Google Scholar 

  25. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interf Sci 150(1):243–269

    Google Scholar 

  26. Johnson KL (2003) Normal contact of elastic solids – Hertz theory. In: Contact mechanics. Cambridge University Press, Cambridge, pp 84–106

    Google Scholar 

  27. Johnson KL, Kendall K, Roberts AD, Proc R (1971) Surface energy and contact of elastic solids. Soc Lon Ser-A 324(1558):301–303

    Google Scholar 

  28. Hurley DC, Kopycinska-Muller M, Langlois ED, Kos AB, Barbosa N (2006) Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy. Appl Phys Lett 89(021311):1–3

    Google Scholar 

  29. Kovalev A, Shulha H, Lemieux M, Myshkin N, Tsukruk VV (2003) Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy. J Mater Res 19(3):716–728

    Google Scholar 

  30. Sarioglu AF, Atalar A, Degertekin FL (2004) Modeling the effect of subsurface interface defects on contact stiffness for ultrasonic atomic force microscopy. Appl Phys Lett 84(26):5368–5370

    Google Scholar 

  31. Killgore JP, Kelly JY, Stafford CM, Fasolka MJ, Hurley DC (2011) Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology 22(17):175706-6

    Google Scholar 

  32. Parlak Z, Degertekin FL (2008) Contact stiffness of finite size subsurface defects for atomic force microscopy: Three-dimensional finite element modeling and experimental verification. J Appl Phys 103(11):114910–114918

    Google Scholar 

  33. Parlak Z, Degertekin LF (2013) Quantitative subsurface imaging by acoustic AFM techniques. Acoustic scanning probe microscopy. Springer, Berlin Heidelberg pp 417–436

    Google Scholar 

  34. Striegler A, Koehler B, Bendjus B, Roellig M, Kopycinska-Mueller M, Meyendorf N (2011) Detection of buried reference structures by use of atomic force acoustic microscopy. Ultramicroscopy 111(8):1405–1416

    Google Scholar 

  35. Clifford CA, Seah MP (2009) Nanoindentation measurement of Young's modulus for compliant layers on stiffer substrates including the effect of Poisson's ratios. Nanotechnology 20(14):145708

    Google Scholar 

  36. Batog GS, Baturin AS, Bormashov VS, Sheshin EP (2006) Calculation of the thicknesses and elastic properties of thin-film coatings using atomic-force acoustic microscopy data. Tech Phys 51(8):1084–1089

    Google Scholar 

  37. Yaralioglu GG, Degertekin FL, Crozier KB, Quate CF (2000) Contact stiffness of layered materials for ultrasonic atomic force microscopy. J Appl Phys 87(10):7491–7496

    Google Scholar 

  38. Onaran AG, Balantekin M, Lee W, Hughes WL, Buchine BA, Guldiken RO, Parlak Z, Quate CF, Degertekin FL (2006) A new atomic force microscope probe with force sensing integrated readout and active tip. Rev Sci Instrum 77(2):023501–023507

    Google Scholar 

  39. Gao H, Chiu C-H, Lee J (1992) Elastic contact versus indentation modeling of multi-layered materials. Int J Solids Struct 29(20):2471–2492

    Google Scholar 

  40. Tsukruk VV, Huang Z, Chizhik SA, Gorbunov VV (1998) Probing of micromechanical properties of compliant polymeric materials. J Mater Sci 33(20):4905–4909

    Google Scholar 

  41. Tsukruk VV, Sidorenko A, Gorbunov VV, Chizhik SA (2001) Surface nanomechanical properties of polymer nanocomposite layers. Langmuir 17(21):6715–6719

    Google Scholar 

  42. Shulha H, Kovalev A, Myshkin N, Tsukruk VV (2004) Some aspects of AFM nanomechanical probing of surface polymer films. Eur Polym J 40(5):949–956

    Google Scholar 

  43. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810

    Google Scholar 

  44. Lin DC, Horkay F (2008) Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 4(4):669–682

    Google Scholar 

  45. Crozier KB, Yaralioglu GG, Degertekin FL, Adams JD, Minne SC, Quate CF (2000) Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl Phys Lett 76(14):1950–1952

    Google Scholar 

  46. Akhremitchev BB, Walker GC (1999) Finite sample thickness effects on elasticity determination using atomic force microscopy. Langmuir 15(17):5630–5634

    Google Scholar 

  47. Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Tech 8(11):1333–1338

    Google Scholar 

  48. Marti O, Holzwarth M, Beil M (2008) Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging. Nanotechnology 19(38):384015–384017

    Google Scholar 

  49. Radmacher M, Tillmann RW, Gaub HE (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64(3):735–742

    Google Scholar 

  50. Nie HY, Motomatsu M, Mizutani W, Tokumoto H (1996) Local elasticity measurement on polymers using atomic force microscopy. Thin Solid Films 273(1):143–148

    Google Scholar 

  51. Arnold W (2012) Force modulation in atomic force microscopy. In: Encyclopedia of nanotechnology. Springer, Netherlands pp 876–884

    Google Scholar 

  52. Bar G, Rubin S, Parikh AN, Swanson BI, Zawodzinski TA, Whangbo MH (1997) Scanning force microscopy study of patterned monolayers of alkanethiols on gold. Importance of tip− sample contact area in interpreting force modulation and friction force microscopy images. Langmuir 13(3):373–377

    Google Scholar 

  53. Dinelli F, Albonetti C, Kolosov OV (2011) Ultrasonic force microscopy: Detection and imaging of ultra-thin molecular domains. Ultramicroscopy 111(4):267–272

    Google Scholar 

  54. Hurley DC, Kopycinska-Muller A, Julthongpiput D, Fasolka MJ (2006) Influence of surface energy and relative humidity on AFM nanomechanical contact stiffness. Appl Surf Sci 253(3):1274–1281

    Google Scholar 

  55. Price WJ, Leigh SA, Hsu SM, Patten TE, Liu G-Y (2005) Measuring the size dependence of Young's modulus using force modulation atomic force microscopy. J Phys Chem A 110(4):1382–1388

    Google Scholar 

  56. Bliznyuk VN, Lipatov YS, Ozdemir N, Todosijchuk TT, Chornaya VN, Singamaneni S (2007) Atomic force and ultrasonic force microscopy investigation of adsorbed layers formed by two incompatible polymers: Polystyrene and poly(butyl methacrylate). Langmuir 23(26):12973–12983

    Google Scholar 

  57. Jourdan JS, Cruchon-Dupeyrat SJ, Huan Y, Kuo PK, Liu GY (1999) Imaging nanoscopic elasticity of thin film materials by atomic force microscopy: Effects of force modulation frequency and amplitude. Langmuir 15(19):6495–6504

    Google Scholar 

  58. Kiridena W, Jain V, Kuo PK, Liu G-Y (1997) Nanometer-scale elasticity measurements on organic monolayers using scanning force microscopy. Surf Interface Anal 25(6):383–389

    Google Scholar 

  59. Cavallini M, Murgia M, Biscarini F (2001) Patterning a conjugated molecular thin film at submicron scale by modified microtransfer molding. Nano Lett 1(4):193–195

    Google Scholar 

  60. Bruno P, Laura S, Giovanni M (2003) Dynamic scanning force microscopy investigation of nanostructured spiral-like domains in Langmuir–Blodgett monolayers. Nanotechnology 14(2):245–249

    Google Scholar 

  61. Zhang J, Parlak Z, Bowers CM, Oas T, Zauscher S, Beilstein J (2012) Mapping mechanical properties of organic thin films by force-modulation microscopy in aqueous media. Nanotechnology 3(1):464–474

    Google Scholar 

  62. Dinelli F, Castell MR, Ritchie DA, Mason NJ, Briggs GAD, Kolosov OV (2000) Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philos Mag A-Phys Condens Matter Struct Defect Mech Prop 80(10):2299–2323

    Google Scholar 

  63. Kimura K, Kobayashi K, Yamada H, Matsushige K (2007) High resolution molecular chain imaging of a poly(vinylidenefluoride–trifluoroethylene) crystal using force modulation microscopy. Nanotechnology 18(30):305504–305506

    Google Scholar 

  64. Porfyrakis K, Kolosov OV, Assender HE (2001) AFM and UFM surface characterization of rubber-toughened poly(methylmethacrylate) samples. J Appl Polym Sci 82(11):2790–2798

    Google Scholar 

  65. Fernandez E, Hernandez R, Cuberes MT, Mijangos C, Lopez D (2010) New hydrogels from interpenetrated physical gels of agarose and chemical gels of polyacrylamide: Effect of relative concentration and crosslinking degree on the viscoelastic and thermal properties. J Polym Sci Pt B-Polym Phys 48(23):2403–2412

    Google Scholar 

  66. Cech V, Trivedi R, Skoda D (2011) Mechanical properties of individual layers in a-SiC:H multilayer film. Plasma Process Polym 8(12):1107–1115

    Google Scholar 

  67. Hu H, Saniger JM, Bañuelos JG (1999) Thin films of polyaniline–polyacrylic acid composite by chemical bath deposition. Thin Solid Films 347(1–2):241–247

    Google Scholar 

  68. Yablon DG, Gannepalli A, Proksch R, Killgore J, Hurley DC, Grabowski J, Tsou AH (2012) Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy. Macromolecules 45(10):4363–4370

    Google Scholar 

  69. Xu X, Koslowski M, Raman A (2012) Dynamics of surface-coupled microcantilevers in force modulation atomic force microscopy–magnetic vs. dither piezo excitation. J Appl Phys 111(5):054303–054303-5

    Google Scholar 

  70. Yuya PA (2008) Contact-resonance atomic force microscopy for viscoelasticity. J Appl Phys 104(7):074916–074917

    Google Scholar 

  71. Yuya PA, Hurley DC, Turner JA (2011) Relationship between Q-factor and sample damping for contact resonance atomic force microscope measurement of viscoelastic properties. J Appl Phys 109(11):113528-5

    Google Scholar 

  72. Passeri D, Rossi M, Tamburri E, Terranova ML (2013) Mechanical characterization of polymeric thin films by atomic force microscopy based techniques. Anal Bioanal Chem 405(5):1463–1478

    Google Scholar 

  73. Deleu M, Nott K, Brasseur R, Jacques P, Thonart P, Dufrêne YF (2001) Imaging mixed lipid monolayers by dynamic atomic force microscopy. BBA-Biomembranes 1513(1):55–62

    Google Scholar 

  74. Zhang B, Cheng Q, Chen M, Yao W, Qian M, Hu B (2012) Imaging and analyzing the elasticity of vascular smooth muscle cells by atomic force acoustic microscope. Ultrasound Med Biol 38(8):1383–1390

    Google Scholar 

  75. Grishin I, Tinker C, Allsop D, Robson A, Kolosov O (2012) Nanoscale SPM characterisation of nacre aragonite plates and synthetic human amyloid fibres. NSTI-Nanotech 2012 3:110–113

    Google Scholar 

  76. Zhao W, Cao C, Korach CS (2011) Measurement of structural variations in enamel nanomechanical properties using quantitative atomic force acoustic microscopy. Time dependent constitutive behavior and fracture/failure processes,. Springer, New York vol 3. pp 373–381

    Google Scholar 

  77. Gannepalli A, Yablon DG, Tsou AH, Proksch R (2011) Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology 22(35):355705–355708

    Google Scholar 

  78. Huey BD (2007) AFM and acoustics: fast, quantitative nanomechanical mapping. In: Annual review of materials research. Annual Reviews, Palo Alto, pp 351–385

    Google Scholar 

  79. Dinelli F, Assender HE, Takeda N, Briggs GAD, Kolosov OV (1999) Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surf Interface Anal 27(5–6):562–567

    Google Scholar 

  80. Preghenella M, Pegoretti A, Migliaresi C (2006) Atomic force acoustic microscopy analysis of epoxy-silica nanocomposites. Polym Testing 25(4):443–451

    Google Scholar 

  81. Geer RE, Kolosov OV, Briggs GAD, Shekhawat GS (2002) Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer. J Appl Phys 91(7):4549–4555

    Google Scholar 

  82. Kolosov OV, Grishin I, Jones R (2011) Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology 22(18):185702–185707

    Google Scholar 

  83. McGuigan AP, Huey BD, Briggs GAD, Kolosov OV, Tsukahara Y, Yanaka M (2002) Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy. Appl Phys Lett 80:1180–1183

    Google Scholar 

  84. Kimura K, Kobayashi K, Matsushige K, Yamada H (2013) Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques. Ultramicroscopy 133:41–49

    Google Scholar 

  85. Alvarado-Rivera J, Munoz-Saldanal J, Castro-Beltran A, Quintero-Armenta JM, Almaral-Sanchez JL, Ramirez-Bon R (2007) Hardness and wearing properties of SiO2-PMMA hybrid coatings reinforced with Al2O3 nanowhiskers. Phys Status Solid C 4(11):4254–4259

    Google Scholar 

  86. Passeri D, Rossi M, Alippi A, Bettucci A, Terranova M, Tamburri E, Toschi F (2008) Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 40(7):2419–2424

    Google Scholar 

  87. Rabe U, Kopycinska M, Hirsekorn S, Saldaña JM, Schneider GA, Arnold W (2002) High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J Phys D Appl Phys 35(20):2621–2635

    Google Scholar 

  88. Tsuji T, Ogiso H, Akedo J, Saito S, Fukuta K, Yamanaka K (2004) Evaluation of domain boundary of piezo/ferroelectric material by ultrasonic atomic force microscopy. Jpn J Appl Phys 43(5B):2907–2913

    Google Scholar 

  89. Kopycinska M, Ziebert C, Schmitt H, Rabe U, Hirsekorn S, Arnold W (2003) Nanoscale imaging of elastic and piezoelectric properties of nanocrystalline leadcalcium titanate. Surf Sci 532:450–455

    Google Scholar 

  90. Passeri D, Rossi M, Alippi A, Bettucci A, Manno D, Serra A, Filippo E, Lucci M, Davoli I (2008) Atomic force acoustic microscopy characterization of nanostructured seleniumtin thin films. Supperlattice Micros 44(4–5):641–649

    Google Scholar 

  91. Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Measurement of Young's modulus of clay minerals using atomic force acoustic microscopy. Geophys Res Lett 29(8):13-1–13-4

    Google Scholar 

  92. Kester E, Rabe U, Presmanes L, Tailhades P, Arnold W (2000) Measurement of Young's modulus of nanocrystalline ferrites with spinel structures by atomic force acoustic microscopy. J Phys Chem Solids 61(8):1275–1284

    Google Scholar 

  93. Cunfu H, Gaimei Z, Bin W, Zaiqi W (2010) Subsurface defect of the SiOx film imaged by atomic force acoustic microscopy. Opt Laser Eng 48(11):1108–1112

    Google Scholar 

  94. Hurley DC, Kopycinska-Müller M, Kos AB, Geiss RH (2005) Quantitative elastic-property measurements at the nanoscale with atomic force acoustic microscopy. Adv Eng Mater 7(8):713–718

    Google Scholar 

  95. Kopycinska-Muller M, Geiss RH, Muller J, Hurley DC (2005) Elastic-property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16:703–709

    Google Scholar 

  96. Hurley DC, Kopycinska-Muller M, Langlois ED, Kos AB, Barbosa N (2006) Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy. Appl Phys Lett 89(2):021911-1–021911-3

    Google Scholar 

  97. Robert L, Cretin B (1999) Determination of the observation depth in scanning microdeformation microscopy. Surf Interface Anal 27(5–6):568–571

    Google Scholar 

  98. Arinero R, Leveque G (2003) Vibration of the cantilever in force modulation microscopy analysis by a finite element model. Rev Sci Instrum 74(1):104–111

    Google Scholar 

  99. Nia Hadi T, Han L, Li Y, Ortiz C, Grodzinsky A (2011) Poroelasticity of cartilage at the nanoscale. Biophys J 101(9):2304–2313

    Google Scholar 

  100. Mazeran P-E, Loubet J-L (1997) Force modulation with a scanning force microscope: an analysis. Tribol Lett 3(1):125–132

    Google Scholar 

  101. Kolosov O, Yamanaka K (1993) Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn J Appl Phys Part 2 Lett 32(8A):L1095–L1098

    Google Scholar 

  102. Kolosov O, Briggs A, Yamanaka K, Arnold W (1996) Nanoscale imaging of mechanical properties by ultrasonic force microscopy (UFM). In: Tortoli P, Masotti L (eds) Acoustical imaging. Springer, New York, pp 665–668

    Google Scholar 

  103. Passeri D, Bettucci A, Rossi M (2010) Acoustics and atomic force microscopy for the mechanical characterization of thin films. Anal Bioanal Chem 396(8):2769–2783

    Google Scholar 

  104. Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (2000) Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys Rev B 61(20):13995–14006

    Google Scholar 

  105. Kolosov O, Briggs A (2013) Ultrasonic force microscopies. In: Marinello F, Passeri D, Savio E (eds) Acoustic scanning probe microscopy. Springer, Berlin/Heidelberg, pp 261–292

    Google Scholar 

  106. Nalladega V, Sathish S, Brar AS (2006) Nondestructive evaluation of submicron delaminations at polymer/metal interface in flex circuits. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol 25a, b. American Institute of Physics, Melville, pp 1562–1569

    Google Scholar 

  107. Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum 67(9):3281–3293

    Google Scholar 

  108. Turner JA, Hirsekorn S, Rabe U, Arnold W (1997) High-frequency response of atomic-force microscope cantilevers. J Appl Phys 82(3):966–979

    Google Scholar 

  109. Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8):430–437

    Google Scholar 

  110. Yamanaka K, Nakano S (1998) Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl Phys A-Mater 66:S313–S317

    Google Scholar 

  111. Yamanaka K, Noguchi A, Tsuji T, Koike T, Goto T (1999) Quantitative material characterization by ultrasonic AFM. Surf Interface Anal 27(5–6):600–606

    Google Scholar 

  112. Passeri D, Bettucci A, Germano M, Rossi M, Alippi A (2006) Local indentation modulus characterization of diamondlike carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique. Appl Phys Lett 88:121910–121913

    Google Scholar 

  113. Wagner H, Bedorf D, Küchemann S, Schwabe M, Zhang B, Arnold W, Samwer K (2011) Local elastic properties of a metallic glass. Nat Mater 10(6):439–442

    Google Scholar 

  114. Nair SS, Wang S, Hurley DC (2010) Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy. Compos Part A-Appl S 41(5):624–631

    Google Scholar 

  115. Killgore JP, Geiss RH, Hurley DC (2011) Continuous measurement of atomic force microscope tip wear by contact resonance force microscopy. Small 7(8):1018–1022

    Google Scholar 

  116. Parlak Z, Degertekin FL (2010) Combined quantitative ultrasonic and time-resolved interaction force AFM imaging. Rev Sci Instrum 81(12):013703-1–013703-4

    Google Scholar 

  117. Killgore JP, Hurley DC (2012) Pulsed contact resonance for atomic force microscopy nanomechanical measurements. Appl Phys Lett 100(5):053104-4

    Google Scholar 

Download references

Acknowledgments

SZ acknowledges support by the NSF through grant DMR-1121107 (MRSEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zauscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zauscher, S., Parlak, Z., Tu, Q. (2014). Mapping the Stiffness of Nanomaterials and Thin Films by Acoustic AFM Techniques. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_40

Download citation

Publish with us

Policies and ethics