Skip to main content
Log in

Toward understanding the microstructure and electrical resistivity of thermal-sprayed high-entropy alloy coatings

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) are a new class of advanced metallic alloys that have received significant attention in recent years due to their stable microstructures and promising properties. However, exploration of the functional properties of these alloys as thermal-sprayed coatings has not been undertaken so far. In the present study, novel equiatomic AlCoCrFeMo, AlCoCrFeMoW, and AlCoCrFeMoV HEA coatings were fabricated using flame spraying to understand the impact of tungsten (W) and vanadium (V) additions in AlCoCrFeMo HEA coatings on microstructure evolutions, phase formations, microhardness, and electrical resistivity. The microstructure revealed the occurrence of mixed oxides and BCC phases, with an apparent porosity range between 2 and 4%. Despite the lower fraction of oxide phases, higher hardness was achieved for AlCoCrFeMoV HEA coatings (714 ± 64 HV), followed by AlCoCrFeMoW (609 ± 61 HV) and AlCoCrFeMo (592 ± 58 HV) HEA coatings. The higher hardness might be attributed to combined interactions of hard oxide phases, solid solution strengthening, and BCC phases. The electrical resistivity values showed a noticeable difference between HEA coatings and control Ni–20Cr coatings, whereby higher electrical resistivity values were achieved for AlCoCrFeMo HEA coatings due to topological lattice distortion and higher oxide fractions. Joule heating testing showed a higher rate of increase in surface temperature for all the HEA coatings than that of Ni–20Cr flame-sprayed coatings for a given electrical power input. The results suggest that the improved electrical properties and heating performance capabilities of flame-sprayed HEA coatings make them an excellent choice for use in high load resistive heating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ et al (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  3. Murty BS, Yeh JW, Ranganathan S, Bhattacharjee PP (2019) High-entropy alloys. Elsevier

    Book  Google Scholar 

  4. Chou TH, Huang JC, Yang CH et al (2020) Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys. Acta Mater 195:71–80. https://doi.org/10.1016/j.actamat.2020.05.015

    Article  CAS  Google Scholar 

  5. Senkov ON, Miracle DB (2016) A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J Alloys Compd 658:603–607. https://doi.org/10.1016/j.jallcom.2015.10.279

    Article  CAS  Google Scholar 

  6. Gludovatz B, Hohenwarter A, Catoor D et al (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  7. Chuang MH, Tsai MH, Wang WR et al (2011) Microstructure and wear behavior of AlxCo 1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater 59:6308–6317. https://doi.org/10.1016/j.actamat.2011.06.041

    Article  CAS  Google Scholar 

  8. Cheng KH, Lai CH, Lin SJ, Yeh JW (2011) Structural and mechanical properties of multi-element (AlCrMoTaTiZr)N x coatings by reactive magnetron sputtering. Thin Solid Films 519:3185–3190. https://doi.org/10.1016/j.tsf.2010.11.034

    Article  CAS  Google Scholar 

  9. Fu Z, Yang B, Gan K et al (2021) Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures. Corros Sci 190:109695. https://doi.org/10.1016/j.corsci.2021.109695

    Article  CAS  Google Scholar 

  10. Chen YY, Duval T, Hung UD et al (2005) Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel. Corros Sci 47:2257–2279. https://doi.org/10.1016/j.corsci.2004.11.008

    Article  CAS  Google Scholar 

  11. Chen YY, Hong UT, Shih HC et al (2005) Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel. Corros Sci 47:2679–2699. https://doi.org/10.1016/j.corsci.2004.09.026

    Article  CAS  Google Scholar 

  12. Quiambao KF, McDonnell SJ, Schreiber DK et al (2019) Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Mater 164:362–376. https://doi.org/10.1016/j.actamat.2018.10.026

    Article  CAS  Google Scholar 

  13. Jeng YR, Tsai PC, Chiang SH (2013) Effects of grain size and orientation on mechanical and tribological characterizations of nanocrystalline nickel films. Wear 303:262–268. https://doi.org/10.1016/j.wear.2013.02.019

    Article  CAS  Google Scholar 

  14. Anupam A, Kottada RS, Kashyap S et al (2020) Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing. Appl Surf Sci 505:144117. https://doi.org/10.1016/j.apsusc.2019.144117

    Article  CAS  Google Scholar 

  15. Patel P, Alidokht SA, Sharifi N et al (2022) Microstructural and tribological behavior of thermal spray CrMnFeCoNi high entropy alloy coatings. J Therm Spray Technol 31:1285–1301. https://doi.org/10.1007/s11666-022-01350-y

    Article  CAS  Google Scholar 

  16. Nair RB, Perumal G, McDonald A (2022) Effect of microstructure on wear and corrosion performance of thermally-sprayed AlCoCrFeMo high entropy alloy coatings. Adv Eng Mater 2101713:1–16. https://doi.org/10.1002/adem.202101713

    Article  CAS  Google Scholar 

  17. Li W, Liu P, Liaw PK (2018) Microstructures and properties of high-entropy alloy films and coatings: a review. Mater Res Lett 6:199–229. https://doi.org/10.1080/21663831.2018.1434248

    Article  CAS  Google Scholar 

  18. Wang C, Li X, Li Z et al (2020) The resistivity–temperature behavior of AlxCoCrFeNi high-entropy alloy films. Thin Solid Films. https://doi.org/10.1016/j.tsf.2020.137895

    Article  Google Scholar 

  19. Shafeie S, Guo S, Erhart P et al (2019) Balancing scattering channels: a panoscopic approach toward zero temperature coefficient of resistance using high-entropy alloys. Adv Mater 31:1–12. https://doi.org/10.1002/adma.201805392

    Article  CAS  Google Scholar 

  20. Huang M, Jiang J, Wang Y et al (2022) Effects of milling process parameters and PCAs on the synthesis of Al0.8Co0.5Cr1.5CuFeNi high entropy alloy powder by mechanical alloying. Mater Des 217:110637. https://doi.org/10.1016/j.matdes.2022.110637

    Article  CAS  Google Scholar 

  21. ASTM E1920–03, 2014. Standard guide for metallographic preparation of thermal sprayed coatings.

  22. ASTM E384–17, Standard test method for microindentation hardness of materials, ASTM International, West Conshohocken, PA 2017.

  23. Rezvani Rad M, Mohammadian Bajgiran M, Moreau C, McDonald A (2020) Fabrication of thermally sprayed coating systems for mitigation of ice accumulation in carbon steel pipes and prevention of pipe bursting. Surf Coatings Technol 397:126013. https://doi.org/10.1016/j.surfcoat.2020.126013

    Article  CAS  Google Scholar 

  24. Meghwal A, Anupam A, Luzin V et al (2021) Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings. J Alloys Compd 854:157140. https://doi.org/10.1016/j.jallcom.2020.157140

    Article  CAS  Google Scholar 

  25. Meghwal A, Anupam A, Murty BS et al (2020) Thermal Spray High-Entropy Alloy Coatings: A Review. Springer, US

    Book  Google Scholar 

  26. Bergant Z, Grum J (2011) Porosity evaluation of flame-sprayed and heat treated nickel-based coatings using image analysis. Image Anal Stereol 30:53–62. https://doi.org/10.5566/ias.v30.p53-62

    Article  CAS  Google Scholar 

  27. Coatings AA, Tillmann W, Khalil O, Abdulgader M (2019) Porosity characterization and its effect on thermal properties of APS-sprayed alumina coatings. Coatings 9(10):601. https://doi.org/10.3390/coatings9100601

    Article  CAS  Google Scholar 

  28. Liu WH, Lu ZP, He JY et al (2016) Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater 116:332–342. https://doi.org/10.1016/j.actamat.2016.06.063

    Article  CAS  Google Scholar 

  29. Dong Y, Zhou K, Lu Y et al (2014) Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater Des 57:67–72. https://doi.org/10.1016/j.matdes.2013.12.048

    Article  CAS  Google Scholar 

  30. Yin B, Maresca F, Curtin WA (2020) Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys. Acta Mater 188:486–491. https://doi.org/10.1016/j.actamat.2020.01.062

    Article  CAS  Google Scholar 

  31. Prudenziati M, Gualtieri ML (2008) Electrical properties of thermally sprayed Ni- and Ni20Cr-based resistors. J Therm Spray Technol 17:385–394. https://doi.org/10.1007/s11666-008-9187-z

    Article  CAS  Google Scholar 

  32. Dehaghani ST, McDonald A, Dolatabadi A (2019) An experimental study of the performance of flame-sprayed Ni-based metal matrix composite coatings as resistive heating elements. Proc Int Therm Spray Conf 527–534

  33. Kim H, Nam S, Roh A et al (2019) Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. Int J Refract Met Hard Mater 80:286–291. https://doi.org/10.1016/j.ijrmhm.2019.02.005

    Article  CAS  Google Scholar 

  34. Zhang Y, Zuo T, Cheng Y, Liaw PK (2013) High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep 3:1–7. https://doi.org/10.1038/srep01455

    Article  CAS  Google Scholar 

  35. Kretova MA, Konchakov RA, Kobelev NP, Khonik VA (2020) Point defects and their properties in the Fe20Ni20Cr20Co20Cu20 high-entropy alloy. JETP Lett 111:679–684. https://doi.org/10.1134/S0021364020120097

    Article  Google Scholar 

  36. Yeh JW (2015) Physical metallurgy of high-entropy alloys. Jom 67:2254–2261. https://doi.org/10.1007/s11837-015-1583-5

    Article  CAS  Google Scholar 

  37. Niu G, Saint-Girons G, Vilquin B (2013) Epitaxial systems combining oxides and semiconductors. Elsevier

    Book  Google Scholar 

  38. Mooij JH (1973) Electrical conduction in concentrated disordered transition metal alloys. Phys Status Solidi 17:521–530. https://doi.org/10.1002/pssa.2210170217

    Article  CAS  Google Scholar 

  39. Ciuchi S, Di Sante D, Dobrosavljević V, Fratini S (2018) The origin of Mooij correlations in disordered metals. Npj Quantum Mater. https://doi.org/10.1038/s41535-018-0119-y

    Article  Google Scholar 

  40. Mueller R, Agyeman K, Tsuei CC (1980) Negative-temperature coefficients of electrical resistivity in amorphous La-based alloys. Phys Rev B 22:2665–2669. https://doi.org/10.1103/PhysRevB.22.2665

    Article  CAS  Google Scholar 

  41. Aug N (2016) The resistance and thermoelectric properties of the transition metals Author (s): N. F. Mott Source: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Published by: Royal Society Stable URL: http://www.jstor.org/stab. 156:368–382

  42. Lopera-Valle A, McDonald A (2015) Application of flame-sprayed coatings as heating elements for polymer-based composite structures. J Therm Spray Technol 24:1289–1301. https://doi.org/10.1007/s11666-015-0302-7

    Article  CAS  Google Scholar 

  43. Tanimoto H, Hozumi R, Kawamura M (2022) Electrical resistivity and short-range order in rapid-quenched CrMnFeCoNi high-entropy alloy. J Alloys Compd 896:163059. https://doi.org/10.1016/j.jallcom.2021.163059

    Article  CAS  Google Scholar 

  44. Lopera-Valle A, McDonald A (2016) Flame-sprayed coatings as de-icing elements for fiber-reinforced polymer composite structures: modeling and experimentation. Int J Heat Mass Transf 97:56–65. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.079

    Article  CAS  Google Scholar 

  45. Evans, M.J. and Rosenthal, J.S., (2004). Probability and statistics: The science of uncertainty. Macmillan.

  46. Dehaghani ST, Dolatabadi A, McDonald A (2021) Thermally sprayed metal matrix composite coatings as heating systems. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2021.117321

    Article  Google Scholar 

  47. Bobzin K, Wietheger W, Knoch MA, Schacht A (2020) Heating behaviour of plasma sprayed TiOx/Cr2O3 coatings for injection moulding. Surf Coatings Technol 399:126199. https://doi.org/10.1016/j.surfcoat.2020.126199

    Article  CAS  Google Scholar 

  48. Prudenziati M (2008) Development and the implementation of high-temperature reliable heaters in plasma spray technology. J Therm Spray Technol 17:234–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science and Engineering Research Council of Canada Discovery Grant Program (Award Number: RGPIN-2018-04298) and the Department of National Defence Innovation for Defence Excellence and Security program (W7714-228267). The authors are also thankful to Nathan Gerein, Guibin Ma, and Rebecca Feng of the Department of Earth and Atmospheric Sciences for their help with SEM and XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanhita Pal.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Nair, R.B. & McDonald, A. Toward understanding the microstructure and electrical resistivity of thermal-sprayed high-entropy alloy coatings. J Mater Sci 57, 20928–20944 (2022). https://doi.org/10.1007/s10853-022-07921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07921-2

Navigation