Skip to main content
Log in

Application of Flame-Sprayed Coatings as Heating Elements for Polymer-Based Composite Structures

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Flame-sprayed nickel-chromium-aluminum-yttrium (NiCrAlY) and nickel-chromium (NiCr) coatings were deposited on fiber-reinforced polymer composites for use as heating elements of structures that were exposed to cold environments. Electrical current was applied to the coatings to increase the surface temperature by way of Joule heating. The surface temperature profiles of the coatings were measured under free and forced convection conditions at different ambient temperatures, ranging from −25 to 23 °C. It was found that at ambient air temperatures below 0 °C, the surface temperature of the coating remained above 0 °C for both the forced and free convection conditions, and there was a nearly homogeneous temperature distribution over the coating surface. This suggests that flame-sprayed coatings could be used as heating elements to mitigate ice accretion on structures, without the presence of areas of localized high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Barber, Y. Wang, S. Jafari, N. Chokani, and R.S. Abhari, The Impact of Ice Formation on Wind Turbine Performance and Aerodynamics, J. Sol. Energy Eng., 2011, 133(1), p 1-9

    Article  Google Scholar 

  2. A.G. Kraj and E.L. Bibeau, Phases of Icing on Wind Turbine Blades Characterized by Ice Accumulation, Renew. Energy, 2010, 35(5), p 966-972

    Article  Google Scholar 

  3. Y. Li, F. Feng, S.M. Li, W.Q. Tian, and K. Tagawa, Wind Tunnel Test on Icing on a Straight Blade for Vertical Axis Wind Turbine, Adv. Mater. Res., 2011, 301-303(1), p 1735-1739

    Google Scholar 

  4. O. Parent and A. Ilinca, Anti-Icing and De-icing Techniques for Wind Turbines: Critical Review, Cold Reg. Sci. Technol., 2011, 65(1), p 88-96

    Article  Google Scholar 

  5. N. Dalili, A. Edrisy, and R. Carriveau, A Review of Surface Engineering Issues Critical to Wind Turbine Performance, Renew. Sustain. Energy Rev., 2009, 13(2), p 428-438

    Article  Google Scholar 

  6. B. Tammelin, M. Cavaliere, H. Holttinen, C. Morgan, and H. Seifert, Wind Energy Production in Cold Climate (WECO), Finnish Meteorological Institute, Helsinki, Finland, 2000

    Google Scholar 

  7. F. Lamraoui, G. Fortin, R. Benoit, J. Perron, and C. Masson, Atmospheric Icing Impact on Wind Turbine Production, Cold Reg. Sci. Technol., 2014, 100(1), p 36-49

    Article  Google Scholar 

  8. T. Laakso and E. Peltola, Wind Energy in Cold Climates-IEA Wind Energy Annual Report, International Energy Agency-Wind Energy, Helsinki, Finland, 2005

    Google Scholar 

  9. L. Talhaug, G. Ronsten, R. Horbaty, I. Baring, A. Lacroix, E. Peltola, and T. Laakso, Study on Wind Energy Projects in Cold Climates, International Energy Agency Programme, Helsinki, Finland, 2005

    Google Scholar 

  10. T. Hu, H. Lv, B. Tian, and D. Su, Choosing Critical Ice Shapes on Airfoil Surface for the Icing Certification of Aircraft, International Symposium on Aircraft Airworthiness, 3rd ed., Nov 19-21, 2013 (Toulouse, France), Elsevier B.V., Procedia Eng., 2014, p 456-466

  11. B. Rooks, Robot Spraying of Helicopter Rotor—Blade Ice Protection System, Ind. Robot Int. J., 2001, 28(4), p 313-317

    Article  Google Scholar 

  12. W.J. Jasinski, M.S. Selig, M.B. Bragg, and S.C. Noe, Wind Turbine Performance Under Icing Conditions, J. Sol. Energy Eng., 1998, 120(2), p 60-65

    Article  Google Scholar 

  13. P. Antikainen and S. Peuranen, Ice Loads-Case Study, BOREAS V Cold Climate Conference, 5th ed., Nov 29-Dec 1, 2000 (Levi, Finland), Finnish Meteorological Institute, 2000, p 1-7

  14. M. Mohseni and A. Amirfazli, A Novel Electro-Thermal Anti-icing System for Fiber-Reinforced Polymer Composite Airfoils, Cold Reg. Sci. Technol., 2013, 87(3), p 47-58

    Article  Google Scholar 

  15. C. Antonini, M. Innocenti, T. Horn, M. Marengo, and A. Amirfazli, Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-icing Systems, Cold Reg. Sci. Technol., 2011, 67(2), p 58-67

    Article  Google Scholar 

  16. N. Buckney, A. Pirrera, S.D. Green, and P.M. Weaver, Structural Efficiency of a Wind Turbine Blade, Thin-Walled Struct., 2013, 67(1), p 144-154

    Article  Google Scholar 

  17. K. Choi, Y. Huh, I. Kwon, and D. Yoon, A Tip Deflection Calculation Method for a Wind Turbine Blade Using Temperature Compensated FBG Sensors, Smart Mater. Struct., 2012, 21(2), p 1-9

    Article  Google Scholar 

  18. A.J. Brunner, Fracture Mechanics Characterization of Polymer Composites for Aerospace Applications, Polymer Composites in the Aerospace Industry, 1st ed., Woodhead Publishing, Cambridge, 2015, p 191-194

  19. S. Kim, W. Kang, M. Jeong, I. Lee, and I. Kwon, Deflection Estimation of a Wind Turbine Blade Using FBG Sensors Embedded in the Blade Bonding Line, Smart Mater. Struct., 2013, 22(12), p 1-11

    Article  Google Scholar 

  20. C. Soutis, Introduction: Engineering Requirements for Aerospace Composite Materials, Polymer Composites in the Aerospace Industry, 1st ed., Woodhead Publishing, Cambridge, 2015, p 1

  21. M. Prudenziati, Development and the Implementation of High-Temperature Reliable Heaters in Plasma Spray Technology, J. Therm. Spray Technol., 2008, 17(2), p 234-243

    Article  Google Scholar 

  22. J.-M. Lamarre, P. Marcoux, M. Perrault, R.C. Abbott, and J.-G. Legoux, Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters, J. Therm. Spray Technol., 2013, 22(6), p 947-953

    Article  Google Scholar 

  23. R. Gonzalez, A. McDonald, and P. Mertiny, Damage Detection Method for Fiber-Reinforced Polymer Composites Using Al-12Si Flame sprayed Coatings, Society for the Advancement of Material and Process Engineering Conference, 2014, SAMPE 2014, June 2-5, 2014 (Seattle, Washington, USA), p 1-9

  24. F. Robitaille, M. Yandouzi, S. Hind, and B. Jodoin, Metallic Coating of Aerospace Carbon/Epoxy Composites by the Pulsed Gas Dynamic Spraying Process, Surf. Coatings Technol., 2009, 203(19), p 2954-2960

    Article  Google Scholar 

  25. R. Gonzalez, A. McDonald, and P. Mertiny, Effect of Flame-Sprayed Al-12Si Coatings on the Failure Behaviour of Pressurized Fibre-Reinforced Composite Tubes, Polym. Test., 2013, 32(8), p 1522-1528

    Article  Google Scholar 

  26. N. Huonnic, M. Abdelghani, P. Mertiny, and A. McDonald, Deposition and Characterization of Flame-Sprayed Aluminum on Cured Glass and Basalt Fiber-Reinforced Epoxy Tubes, Surf. Coatings Technol., 2010, 205(3), p 867-873

    Article  Google Scholar 

  27. Oerlikon Metco, Material Product Data Sheet: Nickel-20 wt.% Chromium (Ni-20Cr) Powders for Thermal Spray, Oerlikon Metco, Westbury, 2013, p 1-5

    Google Scholar 

  28. Oerlikon Metco, Material Product Data Sheet: Nickel Chromium Aluminum Yttrium (NiCrAlY) Powder for Thermal Spray, Oerlikon Metco, Westbury, 2014, p 1-6

    Google Scholar 

  29. S. Vinayak, H.P. Vyas, and V.D. Vankar, Microstructure and Electrical Characteristics of Ni-Cr Thin Films, Thin Solid Films, 2007, 515(18), p 7109-7116

    Article  Google Scholar 

  30. S. Vinayak, H.P. Vyas, K. Muraleedharan, and V.D. Vankar, Ni-Cr Thin Film Resistor Fabrication for Gas Monolithic Microwave Integrated Circuits, Thin Solid Films, 2006, 514(1), p 52-57

    Article  Google Scholar 

  31. P. Jain, S. Raj, and K. Hemker, Characterization of NiCrAlY Coatings for a High Strength, High Conductivity GRCop-84 Copper Alloy, Acta Mater., 2007, 55(15), p 5103-5113

    Article  Google Scholar 

  32. ASTM, Standard Test Method for Ignition Loss of Cured Reinforced Resin, ASTM D2584-11, ASTM, 2011, p 1-3

  33. A. Kaw, Mechanics of Composite Materials, 2nd ed., Taylor & Francis Group, Boca Raton, 2006, p 205-207

    Google Scholar 

  34. H. Yu, D. Heider, and S. Advani, Prediction of Effective Through-Thickness Thermal Conductivity of Woven Fabric Reinforced Composites with Embedded Particles, Compos. Struct., 2015, 127(1), p 132-140

    Article  Google Scholar 

  35. G.M. Nelson, J.A. Nychka, and A.G. McDonald, Structure, Phases, and Mechanical Response of Ti-Alloy Bioactive Glass Composite Coatings, Mater. Sci. Eng. C, 2014, 36(1), p 261-276

    Article  Google Scholar 

  36. D.C. Montgomery, Design and Analysis of Experiments, 8th ed., Wiley, New York, 2013, p 450-451

    Google Scholar 

  37. L. Liu, B.-M. Zhang, D.-F. Wang, and Z.-J. Wu, Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates, Compos. Struct., 2006, 73(3), p 303-309

    Article  Google Scholar 

  38. J.-M. Tang, W.I. Lee, and G.S. Springer, Effects of Cure Pressure on Resin Flow, Voids, and Mechanical Properties, J. Compos. Mater., 1987, 21(5), p 421-440

    Article  Google Scholar 

  39. P. Olivier, J.P. Cottu, and B. Ferret, Effects of Cure Cycle Pressure and Voids on Some Mechanical Properties of Carbon/Epoxy Laminates, Composites, 1995, 26(7), p 509-515

    Article  Google Scholar 

  40. A. Goullieux, J. Pain, D.P. Verne, and L. Eproad, Ohmic Heating, Emerging Technologies for Food Processing, 2nd ed., Elsevier Academic Press, Amsterdam, 2014, p 399-400

  41. A.A. Al-Aql, Electrical Resistivity Measurements in Ni-Cr Alloys, Mater. Des., 2003, 24(7), p 547-550

    Article  Google Scholar 

  42. L.M. Jiji, Heat Conduction, 3rd ed., Wiley, New York, 2012, p 36-38

    Google Scholar 

  43. J.P. Holman, Heat Transfer, 10th ed., McGraw-Hill Higher Education, New York, 2010, p 222-240

    Google Scholar 

  44. L.D.D. Harvey, The Potential of Wind Energy to Largely Displace Existing Canadian Fossil Fuel and Nuclear Electricity Generation, Energy, 2013, 50(1), p 93-102

    Article  Google Scholar 

  45. A. Ilinca, E. McCarthy, J.-L. Chaumel, and J.-L. Rétiveau, Wind Potential Assessment of Quebec Province, Renew. Energy, 2003, 28(12), p 1881-1897

    Article  Google Scholar 

  46. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., ASHRAE Handbook—Fundamentals, I-P ed., ASHRAE, Atlanta, 2005, p 252-2615

    Google Scholar 

  47. A. Culver and A. Monahan, The Statistical Predictability of Surface Winds Over Western and Central Canada, J. Clim., 2013, 26(21), p 8305-8322

    Article  Google Scholar 

  48. Y. Çengel and J. Cimbala, Fluid Mechanics: Fundamentals and Applications, 3rd ed., McGraw-Hill, New York, 2014, p 557-558

    Google Scholar 

  49. W. Rohsenow, J. Hartnett, and Y. Cho, Handbook of Heat Transfer, 3rd ed., McGraw-Hill, New York, 1998, p 6.1-6.19

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Advanced Composite Materials Engineering Group in the Department of Mechanical Engineering at the University of Alberta for fabrication of the FRPC plate substrates. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Government of Alberta Small Equipment Grants Program (SEGP), and the Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André McDonald.

Additional information

This article is an invited paper selected from presentations at the 2015 International Thermal Spray Conference, held May 11-14, 2015, in Long Beach, California, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopera-Valle, A., McDonald, A. Application of Flame-Sprayed Coatings as Heating Elements for Polymer-Based Composite Structures. J Therm Spray Tech 24, 1289–1301 (2015). https://doi.org/10.1007/s11666-015-0302-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0302-7

Keywords

Navigation