Skip to main content
Log in

Additive manufacturing of ceramic particle-reinforced aluminum‐based metal matrix composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Laser powder bed fusion (LPBF) is one of the most widely used additive manufacturing methods for fabricating metal components. It is possible to produce multi-material structures and functionally graded materials with LPBF. The usability of powder mixtures provides a great potential for the production of metal matrix composites (MMCs) with advanced mechanical properties. Among the wide variety of MMCs, aluminum matrix composites are highly potential candidates for aerospace, automotive and biomedical applications due to their outstanding properties including high wear resistance, better chemical inertness and excellent mechanical properties at elevated temperature. Therefore, in this study, ceramic particle-reinforced Al-based MMCs produced by LPBF method are reviewed for the recent developments. Feedstock preparation methods for MMCs are emphasized. The effects of reinforcement particle properties and LPBF process parameters on the microstructure, densification behavior, hardness and tensile properties are discussed comprehensively. The strengthening mechanisms that occur with the addition of ceramic reinforcement are examined. Summary of the findings from this review and trends for future research in the development of Al-based MMCs by LPBF are addressed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Fiocchi J, Tuissi A, Bassani P, Biffi CA (2017) Low temperature annealing dedicated to AlSi10Mg selective laser melting products. J Alloys Compd 695:3402–3409. https://doi.org/10.1016/j.jallcom.2016.12.019

    Article  CAS  Google Scholar 

  2. Zhou C, Hu S, Shi Q et al (2020) Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing. Corros Sci 164:108353. https://doi.org/10.1016/j.corsci.2019.108353

    Article  CAS  Google Scholar 

  3. de Damborenea JJ, Arenas MA, Larosa MA et al (2017) Corrosion of Ti6Al4V pins produced by direct metal laser sintering. Appl Surf Sci 393:340–347. https://doi.org/10.1016/j.apsusc.2016.10.031

    Article  CAS  Google Scholar 

  4. Liu YJ, Liu Z, Jiang Y et al (2018) Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J Alloys Compd 735:1414–1421. https://doi.org/10.1016/j.jallcom.2017.11.020

    Article  CAS  Google Scholar 

  5. Buchbinder D, Schleifenbaum H, Heidrich S et al (2011) High power Selective laser melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278. https://doi.org/10.1016/j.phpro.2011.03.035

    Article  CAS  Google Scholar 

  6. Murr LE, Gaytan SM, Ramirez DA et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14. https://doi.org/10.1016/S1005-0302(12)60016-4

    Article  CAS  Google Scholar 

  7. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components—Process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  8. Seabra M, Azevedo J, Araújo A et al (2016) Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Struct Integr 1:289–296. https://doi.org/10.1016/j.prostr.2016.02.039

    Article  Google Scholar 

  9. Loh GH, Pei E, Harrison D, Monzón MD (2018) An overview of functionally graded additive manufacturing. Addit Manuf 23:34–44. https://doi.org/10.1016/j.addma.2018.06.023

    Article  CAS  Google Scholar 

  10. Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410. https://doi.org/10.1016/j.matdes.2015.06.135

    Article  CAS  Google Scholar 

  11. Tüzemen MÇ, Salamcı E, Ünal R (2022) Investigation of the relationship between flexural modulus of elasticity and functionally graded porous structures manufactured by AM. Mater Today Commun 31:103592

    Article  Google Scholar 

  12. Popovich VA, Borisov EV, Popovich AA et al (2017) Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des 114:441–449. https://doi.org/10.1016/j.matdes.2016.10.075

    Article  CAS  Google Scholar 

  13. Tascioglu E, Karabulut Y, Kaynak Y (2020) Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int J Adv Manuf Technol 107:1947. https://doi.org/10.1007/s00170-020-05115-1

    Article  Google Scholar 

  14. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  15. Li C, Liu ZY, Fang XY, Guo YB (2018) Residual stress in metal additive manufacturing. Procedia CIRP 71:348–353. https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  16. Kok Y, Tan XP, Wang P et al (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586. https://doi.org/10.1016/j.matdes.2017.11.021

    Article  CAS  Google Scholar 

  17. Khan HM, Karabulut Y, Kitay O et al (2020) Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review. Mach Sci Technol 25:118–176. https://doi.org/10.1080/10910344.2020.1855649

    Article  CAS  Google Scholar 

  18. Li W, Li S, Liu J et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  CAS  Google Scholar 

  19. Wang Y, Shi J (2020) Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.139570

    Article  Google Scholar 

  20. Amirkhanlou S, Ji S (2020) A review on high stiffness aluminum-based composites and bimetallics. Crit Rev Solid State Mater Sci 45:1–21. https://doi.org/10.1080/10408436.2018.1485550

    Article  CAS  Google Scholar 

  21. Wang Z, Qu RT, Scudino S et al (2015) Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater 7:1–8. https://doi.org/10.1038/am.2015.129

    Article  CAS  Google Scholar 

  22. Zhang Y, Guo Y, Chen Y et al (2019) Ultrasonic-assisted laser metal deposition of the Al 4047alloy. Metals (Basel) 9:1–15. https://doi.org/10.3390/met9101111

    Article  CAS  Google Scholar 

  23. Niu F, Wu D, Ma G et al (2015) Nanosized microstructure of Al2O3-ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping. Scr Mater 95:39–41. https://doi.org/10.1016/j.scriptamat.2014.09.026

    Article  CAS  Google Scholar 

  24. Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’41 by laser melting deposition manufacturing. Mater Sci Eng A 527:4823–4829. https://doi.org/10.1016/j.msea.2010.04.062

    Article  CAS  Google Scholar 

  25. Hu Y, Cong W, Wang X et al (2018) Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening. Compos Part B Eng 133:91–100. https://doi.org/10.1016/j.compositesb.2017.09.019

    Article  CAS  Google Scholar 

  26. Emamian A, Alimardani M, Khajepour A (2014) Effect of cooling rate and laser process parameters on additive manufactured Fe-Ti-C metal matrix composites microstructure and carbide morphology. J Manuf Process 16:511–517. https://doi.org/10.1016/j.jmapro.2014.07.002

    Article  Google Scholar 

  27. Koczak MJ, Premkumar MK (1993) Emerging technologies for the in-situ production of MMCs. Jom 45:44–48. https://doi.org/10.1007/BF03223365

    Article  CAS  Google Scholar 

  28. He X, Zhang YZ, Mansell JP, Su B (2008) Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. J Mater Sci Mater Med 19:2743–2749. https://doi.org/10.1007/s10856-008-3401-x

    Article  CAS  Google Scholar 

  29. Mandal N, Doloi B, Mondal B (2013) Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert. Int J Refract Met Hard Mater 38:40–46. https://doi.org/10.1016/j.ijrmhm.2012.12.007

    Article  CAS  Google Scholar 

  30. Miracle DB (2005) Metal matrix composites–From science to technological significance. Compos Sci Technol 65:2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  CAS  Google Scholar 

  31. Scudino S, Liu G, Sakaliyska M et al (2009) Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: analysis and modeling of mechanical properties. Acta Mater 57:4529–4538. https://doi.org/10.1016/j.actamat.2009.06.017

    Article  CAS  Google Scholar 

  32. Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9. https://doi.org/10.1016/S0924-0136(99)00291-5

    Article  Google Scholar 

  33. Cyboroń J, Karolus M, Putyra P et al (2016) Structure properties of AlSi7Mg/SiC composite produced by stir casting method. Acta Phys Pol A 130:969–971. https://doi.org/10.12693/APhysPolA.130.969

    Article  Google Scholar 

  34. Dehghan Hamedan A, Shahmiri M (2012) Production of A356–1wt% SiC nanocomposite by the modified stir casting method. Mater Sci Eng A 556:921–926. https://doi.org/10.1016/j.msea.2012.07.093

    Article  CAS  Google Scholar 

  35. Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175:364–375. https://doi.org/10.1016/j.jmatprotec.2005.04.038

    Article  CAS  Google Scholar 

  36. Zhang B, Zheng XL, Tokura H, Yoshikawa M (2003) Grinding induced damage in ceramics. J Mater Process Technol 132:353–364. https://doi.org/10.1016/S0924-0136(02)00952-4

    Article  CAS  Google Scholar 

  37. Dadbakhsh S, Mertens R, Hao L et al (2019) Selective laser melting to manufacture “in situ” metal matrix composites: a review. Adv Eng Mater 21:1–18. https://doi.org/10.1002/adem.201801244

    Article  CAS  Google Scholar 

  38. Dinda GP, Dasgupta AK, Mazumder J (2012) Evolution of microstructure in laser deposited Al–11.28% Si alloy. Surf Coatings Technol 206:2152–2160

    Article  CAS  Google Scholar 

  39. Dinda GP, Dasgupta AK, Bhattacharya S et al (2013) Microstructural characterization of laser-deposited Al 4047 alloy. Metall Mater Trans A 44:2233–2242

    Article  CAS  Google Scholar 

  40. Bhavar V, Kattire P, Patil V, et al (2017) A review on powder bed fusion technology of metal additive manufacturing. Addit Manuf Handb 251–253

  41. Levy GN (2010) The role and future of the Laser technology in the Additive Manufacturing environment. Phys Procedia 5:65–80. https://doi.org/10.1016/j.phpro.2010.08.123

    Article  Google Scholar 

  42. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002

    Article  CAS  Google Scholar 

  43. Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36. https://doi.org/10.1108/13552549510078113

    Article  Google Scholar 

  44. Yap CY, Chua CK, Dong ZL et al (2015) Review of selective laser melting: materials and applications. Appl Phys Rev. https://doi.org/10.1063/1.4935926

    Article  Google Scholar 

  45. Lachmayer R, Zghair YA, Klose C, Nürnberger F (2016) Introducing selective laser melting to manufacture machine elements. In: DS 84: Proceedings of the DESIGN 2016 14th international design conference. pp 831–842

  46. Samanta A, Wang Q, Ding H (2018) A novel selective laser melting process for glass fiber-reinforced metal matrix composites. Manuf Lett 18:27–30. https://doi.org/10.1016/j.mfglet.2018.09.006

    Article  Google Scholar 

  47. Shen N, Samanta A, Wang Q, Ding H (2017) Selective laser melting of fiber-reinforced glass composites. Manuf Lett 14:6–9. https://doi.org/10.1016/j.mfglet.2017.09.001

    Article  Google Scholar 

  48. Fereiduni E, Ghasemi A, Elbestawi M (2019) Selective laser melting of hybrid ex-situ/in-situ reinforced titanium matrix composites: laser/powder interaction, reinforcement formation mechanism, and non-equilibrium microstructural evolutions. Mater Des 184:108185. https://doi.org/10.1016/j.matdes.2019.108185

    Article  CAS  Google Scholar 

  49. Zhai W, Zhu Z, Zhou W et al (2020) Selective laser melting of dispersed TiC particles strengthened 316L stainless steel. Compos Part B Eng 199:108291. https://doi.org/10.1016/j.compositesb.2020.108291

    Article  CAS  Google Scholar 

  50. Fereiduni E, Ghasemi A, Elbestawi M (2020) Selective laser melting of aluminum and titanium matrix composites: recent progress and potential applications in the aerospace industry. Aerospace. https://doi.org/10.3390/AEROSPACE7060077

    Article  Google Scholar 

  51. Zhou W, Sun X, Kikuchi K et al (2018) Carbon nanotubes as a unique agent to fabricate nanoceramic/metal composite powders for additive manufacturing. Mater Des 137:276–285. https://doi.org/10.1016/j.matdes.2017.10.034

    Article  CAS  Google Scholar 

  52. Li M, Fang A, Martinez-Franco E et al (2019) Selective laser melting of metal matrix composites: feedstock powder preparation by electroless plating. Mater Lett 247:115–118. https://doi.org/10.1016/j.matlet.2019.03.092

    Article  CAS  Google Scholar 

  53. Aksoy A, Ünal R (2006) Effects of gas pressure and protrusion length of melt delivery tube on powder size and powder morphology of nitrogen gas atomised tin powders. Powder Metall. https://doi.org/10.1179/174329006X89425

    Article  Google Scholar 

  54. Ünal R (2007) Investigation on metal powder production efficiency of new convergent divergent nozzle in close coupled gas atomisation. Powder Metall 50:302–306. https://doi.org/10.1179/174329007X189595

    Article  CAS  Google Scholar 

  55. Chen G, Zhao SY, Tan P et al (2018) A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol 333:38–46. https://doi.org/10.1016/j.powtec.2018.04.013

    Article  CAS  Google Scholar 

  56. Yurtkuran E, Ünal R (2020) Numerical and experimental investigation on the effects of a nozzle attachment to plasma torches for plasma atomization. Plasma Chem Plasma Process 40:1127–1144. https://doi.org/10.1007/s11090-020-10095-x

    Article  CAS  Google Scholar 

  57. Yurturan E, Ünal R (2022) Theoretical and experimental investigation of Tialloy powder production using low-power plasma torches. Trans Nonferrous Met Soc China 32:175–191

    Article  Google Scholar 

  58. Tang S, Ummethala R, Suryanarayana C et al (2021) Additive manufacturing of aluminum-based metal matrix composites—A Review. Adv Eng Mater 23:1–17. https://doi.org/10.1002/adem.202100053

    Article  CAS  Google Scholar 

  59. Han Q, Setchi R, Evans SL (2016) Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 297:183–192. https://doi.org/10.1016/j.powtec.2016.04.015

    Article  CAS  Google Scholar 

  60. Riener K, Albrecht N, Ziegelmeier S et al (2020) Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF). Addit Manuf 34:101286. https://doi.org/10.1016/j.addma.2020.101286

    Article  CAS  Google Scholar 

  61. Wang R, Xi L, Ding K et al (2022) Powder preparation during ball milling and laser additive manufacturing of aluminum matrix nanocomposites: powder properties, processability and mechanical property. Adv Powder Technol 33:103687. https://doi.org/10.1016/j.apt.2022.103687

    Article  CAS  Google Scholar 

  62. Dadbakhsh S, Hao L (2012) Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloys Compd 541:328–334. https://doi.org/10.1016/j.jallcom.2012.06.097

    Article  CAS  Google Scholar 

  63. Xia M, Liu A, Wang H et al (2019) Microstructure evolution and its effect on mechanical response of the multi-phase reinforced Ti-based composites by laser powder-bed fusion. J Alloys Compd 782:506–515. https://doi.org/10.1016/j.jallcom.2018.12.182

    Article  CAS  Google Scholar 

  64. Chen H, Gu D, Deng L et al (2020) Laser additive manufactured high-performance Fe-based composites with unique strengthening structure. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.04.011

    Article  Google Scholar 

  65. Chen H, Gu D, Kosiba K et al (2020) Achieving high strength and high ductility in WC-reinforced iron-based composites by laser additive manufacturing. Addit Manuf 35:101195. https://doi.org/10.1016/j.addma.2020.101195

    Article  CAS  Google Scholar 

  66. Gu D, Shen Y, Lu Z (2009) Microstructural characteristics and formation mechanism of direct laser-sintered Cu-based alloys reinforced with Ni particles. Mater Des 30:2099–2107. https://doi.org/10.1016/j.matdes.2008.08.036

    Article  CAS  Google Scholar 

  67. Gu D, Shen Y (2008) Direct laser sintered WC-10Co/Cu nanocomposites. Appl Surf Sci 254:3971–3978. https://doi.org/10.1016/j.apsusc.2007.12.028

    Article  CAS  Google Scholar 

  68. Zhang Z, Han Q, Yang S et al (2021) Laser powder bed fusion of advanced submicrometer TiB2 reinforced high-performance Ni-based composite. Mater Sci Eng A 817:141416. https://doi.org/10.1016/j.msea.2021.141416

    Article  CAS  Google Scholar 

  69. Kaczmar JW, Pietrzak K, Wlosiński W (2000) Production and application of metal matrix composite materials. J Mater Process Technol 106:58–67. https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  70. Han Q, Setchi R, Lacan F et al (2017) Selective laser melting of advanced Al-Al2O3 nanocomposites: simulation, microstructure and mechanical properties. Mater Sci Eng A 698:162–173. https://doi.org/10.1016/j.msea.2017.05.061

    Article  CAS  Google Scholar 

  71. Gao C, Wang Z, Xiao Z et al (2020) Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: microstructural, interfacial, and mechanical properties. J Mater Process Technol 281:116618. https://doi.org/10.1016/j.jmatprotec.2020.116618

    Article  CAS  Google Scholar 

  72. Dai D, Gu D (2016) Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tools Manuf 100:14–24. https://doi.org/10.1016/j.ijmachtools.2015.10.004

    Article  Google Scholar 

  73. Li XP, Ji G, Chen Z et al (2017) Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater 129:183–193. https://doi.org/10.1016/j.actamat.2017.02.062

    Article  CAS  Google Scholar 

  74. Jiang L, Li Z, Fan G et al (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon N Y 50:1993–1998. https://doi.org/10.1016/j.carbon.2011.12.057

    Article  CAS  Google Scholar 

  75. Kusoglu IM, Gökce B, Barcikowski S (2020) Use of (nano-)additives in laser powder bed fusion of Al powder feedstocks: research directions within the last decade. Procedia CIRP 94:11–16. https://doi.org/10.1016/j.procir.2020.09.003

    Article  Google Scholar 

  76. Nayim SMTI, Hasan MZ, Seth PP et al (2020) Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Mater Today Proc 21:1421–1424. https://doi.org/10.1016/j.matpr.2019.08.203

    Article  CAS  Google Scholar 

  77. Nair SV, Tien JK, Bates RC (1985) SiC-reinforced aluminium metal matrix composites. Int Met Rev 30:275–290. https://doi.org/10.1179/imtr.1985.30.1.275

    Article  CAS  Google Scholar 

  78. Chen AL, Arai Y, Tsuchida E (2005) An experimental study on effect of thermal cycling on monotonic and cyclic response of cast aluminium alloy-SiC particulate composites. Compos Part B Eng 36:319–330. https://doi.org/10.1016/j.compositesb.2004.11.006

    Article  CAS  Google Scholar 

  79. Yang Z, Lu Z (2013) Atomistic simulation of the mechanical behaviors of co-continuous Cu/SiC nanocomposites. Compos Part B Eng 44:453–457. https://doi.org/10.1016/j.compositesb.2012.04.010

    Article  CAS  Google Scholar 

  80. Umanath K, Palanikumar K, Selvamani ST (2013) Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O 3 hybrid metal matrix composites. Compos Part B Eng 53:159–168. https://doi.org/10.1016/j.compositesb.2013.04.051

    Article  CAS  Google Scholar 

  81. Li X, Zhang K, Konietzky H et al (2020) Experimental study on the dynamic mechanical behaviors of silicon carbide ceramic after thermal shock. Nucl Mater Energy 24:100774. https://doi.org/10.1016/j.nme.2020.100774

    Article  Google Scholar 

  82. Nastic A, Merati A, Bielawski M et al (2015) Instrumented and vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC Armor. J Mater Sci Technol 31:773–783. https://doi.org/10.1016/j.jmst.2015.06.005

    Article  CAS  Google Scholar 

  83. Du Y, Zhang P, Zhang W, Wang Y (2018) Distribution of SiC particles in semisolid electromagnetic-mechanical stir-casting Al-SiC composite. China Foundry 15:351–357

    Article  Google Scholar 

  84. Anandkumar R, Almeida A, Colaço R et al (2007) Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings. Surf Coatings Technol 201:9497–9505. https://doi.org/10.1016/j.surfcoat.2007.04.003

    Article  CAS  Google Scholar 

  85. Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23. https://doi.org/10.1179/imr.1994.39.1.1

    Article  CAS  Google Scholar 

  86. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—A review. J Mater Sci 26:1137–1156. https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  87. Astfalck LC, Kelly GK, Li X, Sercombe TB (2017) On the breakdown of SiC during the selective laser melting of aluminum matrix composites. Adv Eng Mater 19:1–6. https://doi.org/10.1002/adem.201600835

    Article  CAS  Google Scholar 

  88. Xue G, Ke L, Zhu H et al (2019) Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: densification, microstructure and mechanical properties. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2019.138155

    Article  Google Scholar 

  89. Ghosh SK, Saha P, Kishore S (2010) Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater Sci Eng A 527:4694–4701. https://doi.org/10.1016/j.msea.2010.03.108

    Article  CAS  Google Scholar 

  90. Gu D, Chang F, Dai D (2015) Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases. J Manuf Sci Eng Trans ASME 137:1–11. https://doi.org/10.1115/1.4028925

    Article  Google Scholar 

  91. Xue G, Ke L, Liao H et al (2020) Effect of SiC particle size on densification behavior and mechanical properties of SiCp/AlSi10Mg composites fabricated by laser powder bed fusion. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156260

    Article  Google Scholar 

  92. Chang F, Gu D, Dai D, Yuan P (2015) Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size. Surf Coatings Technol 272:15–24. https://doi.org/10.1016/j.surfcoat.2015.04.029

    Article  CAS  Google Scholar 

  93. Wang M, Song B, Wei Q, Shi Y (2019) Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting. J Alloys Compd 810:151926. https://doi.org/10.1016/j.jallcom.2019.151926

    Article  CAS  Google Scholar 

  94. Yu WH, Sing SL, Chua CK et al (2019) Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog Mater Sci 104:330–379. https://doi.org/10.1016/j.pmatsci.2019.04.006

    Article  CAS  Google Scholar 

  95. Gu D, Yang Y, Xi L et al (2019) Laser absorption behavior of randomly packed powder-bed during selective laser melting of SiC and TiB2 reinforced Al matrix composites. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2019.105600

    Article  Google Scholar 

  96. Gu D, Hagedorn YC, Meiners W et al (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60:3849–3860. https://doi.org/10.1016/j.actamat.2012.04.006

    Article  CAS  Google Scholar 

  97. Wang Z, Zhuo L, Yin E, Zhao Z (2021) Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2021.140864

    Article  Google Scholar 

  98. Wang L, zhi, Wang S, Wu J jiao, (2017) Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol 96:88–96. https://doi.org/10.1016/j.optlastec.2017.05.006

    Article  CAS  Google Scholar 

  99. Yang KV, Rometsch P, Jarvis T et al (2018) Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mater Sci Eng A 712:166–174. https://doi.org/10.1016/j.msea.2017.11.078

    Article  CAS  Google Scholar 

  100. Ribes H, Da Silva R, Suéry M, Bretheau T (1990) Effect of interfacial oxide layer in Al–SiC particle composites on bond strength and mechanical behaviour. Mater Sci Technol (United Kingdom) 6:621–628. https://doi.org/10.1179/mst.1990.6.7.621

    Article  CAS  Google Scholar 

  101. Zhang W, Zhu H, Hu Z, Zeng X (2017) Study on the Selective laser melting of AlSi10Mg. Jinshu Xuebao Acta Metall Sin 53:918–926. https://doi.org/10.11900/0412.1961.2016.00472

    Article  CAS  Google Scholar 

  102. Hadadzadeh A, Amirkhiz BS, Mohammadi M (2019) Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg. Mater Sci Eng A 739:295–300. https://doi.org/10.1016/j.msea.2018.10.055

    Article  CAS  Google Scholar 

  103. Tan Q, Zhang J, Mo N et al (2020) A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit Manuf 32:101034. https://doi.org/10.1016/j.addma.2019.101034

    Article  CAS  Google Scholar 

  104. Suryawanshi J, Prashanth KG, Scudino S et al (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–294. https://doi.org/10.1016/j.actamat.2016.06.009

    Article  CAS  Google Scholar 

  105. Dai D, Gu D, Zhang H et al (2018) Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts. Opt Laser Technol 99:91–100. https://doi.org/10.1016/j.optlastec.2017.08.015

    Article  CAS  Google Scholar 

  106. Narayanasamy R, Anandakrishnan V, Pandey KS (2008) Effect of geometric work-hardening and matrix work-hardening on workability and densification of aluminium-3.5% alumina composite during cold upsetting. Mater Des 29:1582–1599. https://doi.org/10.1016/j.matdes.2007.11.006

    Article  CAS  Google Scholar 

  107. Albiter A, Contreras A, Bedolla E, Perez R (2003) Structural and chemical characterization of precipitates in Al-2024/TiC composites. Compos Part A Appl Sci Manuf 34:17–24. https://doi.org/10.1016/S1359-835X(02)00259-2

    Article  CAS  Google Scholar 

  108. Mhadhbi M (2020) Titanium carbide: synthesis, properties and applications. Brill Eng 2:1–11. https://doi.org/10.36937/ben.2021.002.001

    Article  Google Scholar 

  109. Wang P, Eckert J, Prashanth K, gokuldoss, et al (2020) A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Trans Nonferrous Met Soc China 30(8):2001–2034

    Article  CAS  Google Scholar 

  110. Almangour B (2018) Additive manufacturing of emerging materials. Springer, Newyork

    Google Scholar 

  111. Zhou Y, Wen S, Wang C et al (2019) Effect of TiC content on the Al-15Si alloy processed by selective laser melting: microstructure and mechanical properties. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2019.105719

    Article  Google Scholar 

  112. Gu D, Wang H, Chang F, et al (2014) Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties. In: Physics Procedia. pp 108–116

  113. Chen H, Gu D, Dai D et al (2017) Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Mater Sci Eng A 682:279–289. https://doi.org/10.1016/j.msea.2016.11.047

    Article  CAS  Google Scholar 

  114. Rodriguez MA, Stefan DK, Allen A, et al (2017) Microstructure and Thermal Properties of Selective Laser Melted AlSi10Mg Alloy. Sandia Natl Lab (SNL-NM), Albuquerque, NM (United States)

  115. Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scr Mater 65:1097–1100. https://doi.org/10.1016/j.scriptamat.2011.09.028

    Article  CAS  Google Scholar 

  116. Vasantgadkar NA, Bhandarkar UV, Joshi SS (2010) A finite element model to predict the ablation depth in pulsed laser ablation. Thin Solid Films 519:1421–1430. https://doi.org/10.1016/j.tsf.2010.09.016

    Article  CAS  Google Scholar 

  117. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211:275–284. https://doi.org/10.1016/j.jmatprotec.2010.09.019

    Article  CAS  Google Scholar 

  118. Yuan P, Gu D, Dai D (2015) Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites. Mater Des 82:46–55. https://doi.org/10.1016/j.matdes.2015.05.041

    Article  CAS  Google Scholar 

  119. Zhou SY, Wang ZY, Su Y et al (2020) Effects of micron/submicron TiC on additively manufactured AlSi10Mg: a comprehensive study from computer simulation to mechanical and microstructural analysis. Jom 72:3693–3704. https://doi.org/10.1007/s11837-019-03984-w

    Article  CAS  Google Scholar 

  120. Lin TC, Cao C, Sokoluk M et al (2019) Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-12047-2

    Article  CAS  Google Scholar 

  121. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  CAS  Google Scholar 

  122. Gu D, Wang H, Dai D et al (2015) Densification behavior, microstructure evolution, and wear property of TiC nanoparticle reinforced AlSi10Mg bulk-form nanocomposites prepared by selective laser melting. J Laser Appl 27:S17003. https://doi.org/10.2351/1.4870877

    Article  Google Scholar 

  123. Gu D, Wang H, Chang F, et al (2014) Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties. In: Physics Procedia. Elsevier B.V., pp 108–116

  124. Arafune K, Hirata A (1999) Thermal and solutal marangoni convection in In-Ga-Sb system. J Cryst Growth 197:811–817. https://doi.org/10.1016/S0022-0248(98)01071-9

    Article  CAS  Google Scholar 

  125. Gu D, Wang H, Dai D et al (2015) Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr Mater 96:25–28. https://doi.org/10.1016/j.scriptamat.2014.10.011

    Article  CAS  Google Scholar 

  126. Gu D, Shen Y (2007) Effects of dispersion technique and component ratio on densification and microstructure of multi-component Cu-based metal powder in direct laser sintering. J Mater Process Technol 182:564–573. https://doi.org/10.1016/j.jmatprotec.2006.09.026

    Article  CAS  Google Scholar 

  127. Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A 428:148–158. https://doi.org/10.1016/j.msea.2006.04.117

    Article  CAS  Google Scholar 

  128. Gu D, Wang H, Dai D (2016) Laser additive manufacturing of novel aluminum based nanocomposite parts: tailored forming of multiple materials. J Manuf Sci Eng Trans ASME 138:1–11. https://doi.org/10.1115/1.4030376

    Article  Google Scholar 

  129. Wang H, Gu D (2015) Nanometric TiC reinforced AlSi10Mg nanocomposites: powder preparation by high-energy ball milling and consolidation by selective laser melting. J Compos Mater 49:1639–1651. https://doi.org/10.1177/0021998314538870

    Article  CAS  Google Scholar 

  130. Zhong XL, Wong WLE, Gupta M (2007) Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta Mater 55:6338–6344. https://doi.org/10.1016/j.actamat.2007.07.039

    Article  CAS  Google Scholar 

  131. Hassan SF, Gupta M (2005) Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A 392:163–168. https://doi.org/10.1016/j.msea.2004.09.047

    Article  CAS  Google Scholar 

  132. Mohanty PS, Mazumder J (1998) Solidification behavior and microstructural evolution during laser beam-material interaction. Metall Mater Trans 29:1269–1279. https://doi.org/10.1007/s11663-998-0050-x

    Article  Google Scholar 

  133. Wang Y, Shi J (2020) Effect of post heat treatment on the microstructure and tensile properties of nano TiC particulate reinforced inconel 718 by selective laser melting. J Manuf Sci Eng Trans ASME 142:1–12. https://doi.org/10.1115/1.4046646

    Article  Google Scholar 

  134. Lorusso M, Aversa A, Manfredi D et al (2016) Tribological behavior of aluminum alloy AlSi10Mg-TiB2 composites produced by direct metal laser sintering (DMLS). J Mater Eng Perform 25:3152–3160. https://doi.org/10.1007/s11665-016-2190-5

    Article  CAS  Google Scholar 

  135. Liao H, Zhu H, Xue G, Zeng X (2019) Alumina loss mechanism of Al2O3-AlSi10 Mg composites during selective laser melting. J Alloys Compd 785:286–295. https://doi.org/10.1016/j.jallcom.2019.01.116

    Article  CAS  Google Scholar 

  136. Jue J, Gu D, Chang K, Dai D (2017) Microstructure evolution and mechanical properties of Al-Al2O3 composites fabricated by selective laser melting. Powder Technol 310:80–91. https://doi.org/10.1016/j.powtec.2016.12.079

    Article  CAS  Google Scholar 

  137. Li W, Yang Y, Liu J et al (2017) Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting. Acta Mater 136:90–104

    Article  CAS  Google Scholar 

  138. Gao C, Wu W, Shi J et al (2020) Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101378

    Article  Google Scholar 

  139. Gao C, Xiao Z, Liu Z et al (2019) Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity. Mater Lett 236:362–365. https://doi.org/10.1016/j.matlet.2018.10.126

    Article  CAS  Google Scholar 

  140. Turnbull D, Vonnegut B (1952) Nucleation catalysis. Ind Eng Chem 44:1292–1298

    Article  CAS  Google Scholar 

  141. Xi L, Gu D, Guo S et al (2020) Grain refinement in laser manufactured Al-based composites with TiB2 ceramic. J Mater Res Technol 9:2611–2622. https://doi.org/10.1016/j.jmrt.2020.04.059

    Article  CAS  Google Scholar 

  142. Xiao YK, Bian ZY, Wu Y et al (2019) Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting. J Alloys Compd 798:644–655. https://doi.org/10.1016/j.jallcom.2019.05.279

    Article  CAS  Google Scholar 

  143. Xi L, Gu D, Lin K et al (2020) Effect of ceramic particle size on densification behavior, microstructure formation, and performance of TiB-reinforced Al-based composites prepared by selective laser melting. J Mater Res 35:559–570. https://doi.org/10.1557/jmr.2019.392

    Article  CAS  Google Scholar 

  144. Du Z, Chen HC, Tan MJ et al (2020) Effect of nAl2O3 on the part density and microstructure during the laser-based powder bed fusion of AlSi10Mg composite. Rapid Prototyp J 26:727–735. https://doi.org/10.1108/RPJ-05-2019-0136

    Article  Google Scholar 

  145. Xi L, Guo S, Gu D et al (2020) Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites. J Alloys Compd 819:152980. https://doi.org/10.1016/j.jallcom.2019.152980

    Article  CAS  Google Scholar 

  146. Li Y, Gu D, Zhang H, Xi L (2020) Effect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy. Chin J Mech Eng. https://doi.org/10.1186/s10033-020-00448-0

    Article  Google Scholar 

  147. Xi L, Wang P, Prashanth KG et al (2019) Effect of TiB2 particles on microstructure and crystallographic texture of Al-12Si fabricated by selective laser melting. J Alloys Compd 786:551–556. https://doi.org/10.1016/j.jallcom.2019.01.327

    Article  CAS  Google Scholar 

  148. Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng A 531:112–118. https://doi.org/10.1016/j.msea.2011.10.043

    Article  CAS  Google Scholar 

  149. Wang W, Bai X, Zhang L et al (2022) Additive manufacturing of Csf/SiC composites with high fiber content by direct ink writing and liquid silicon infiltration. Ceram Int 48:3895–3903. https://doi.org/10.1016/j.ceramint.2021.10.176

    Article  CAS  Google Scholar 

  150. Liu X, Zou B, Xing H, Huang C (2020) The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceram Int 46:937–944. https://doi.org/10.1016/j.ceramint.2019.09.054

    Article  CAS  Google Scholar 

  151. Li S, Zhang Y, Zhao T et al (2020) Additive manufacturing of SiBCN/Si 3 N 4 w composites from preceramic polymers by digital light processing. RSC Adv 10:5681–5689

    Article  CAS  Google Scholar 

  152. Fu H, Zhu W, Xu Z et al (2019) Effect of silicon addition on the microstructure, mechanical and thermal properties of Cf/SiC composite prepared via selective laser sintering. J Alloys Compd 792:1045–1053. https://doi.org/10.1016/j.jallcom.2019.04.129

    Article  CAS  Google Scholar 

  153. Zhang H, Yang Y, Hu K et al (2020) Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics. Addit Manuf 34:101199. https://doi.org/10.1016/j.addma.2020.101199

    Article  CAS  Google Scholar 

  154. Xie H, Zhang J, Li F et al (2021) Selective laser melting of SiCp/Al composites: densification, microstructure, and mechanical and tribological properties. Ceram Int 47:30826–30837. https://doi.org/10.1016/j.ceramint.2021.07.263

    Article  CAS  Google Scholar 

  155. Zhao X, Gu D, Ma C et al (2019) Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites. Vacuum 160:189–196. https://doi.org/10.1016/j.vacuum.2018.11.022

    Article  CAS  Google Scholar 

  156. He P, Kong H, Liu Q et al (2021) Elevated temperature mechanical properties of TiCN reinforced AlSi10Mg fabricated by laser powder bed fusion additive manufacturing. Mater Sci Eng A 811:141025. https://doi.org/10.1016/j.msea.2021.141025

    Article  CAS  Google Scholar 

  157. Wu L, Zhao Z, Bai P et al (2020) Wear resistance of graphene nano-platelets (GNPs) reinforced AlSi10Mg matrix composite prepared by SLM. Appl Surf Sci 503:144156. https://doi.org/10.1016/j.apsusc.2019.144156

    Article  CAS  Google Scholar 

  158. Luo S, Li R, He P et al (2021) Investigation on the microstructure and mechanical properties of CNTs-AlSi10Mg composites fabricated by selective laser melting. Materials (Basel) 14:1–15. https://doi.org/10.3390/ma14040838

    Article  CAS  Google Scholar 

  159. Zhang D, Yi D, Wu X et al (2022) SiC reinforced AlSi10Mg composites fabricated by selective laser melting. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162365

    Article  Google Scholar 

  160. Zhang J, Li F, Zhu Q, Zhang H (2019) Preparation of silicon carbide reinforced aluminium matrix composites (SiC/Al) by selective laser melting. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/678/1/012015

    Article  Google Scholar 

  161. Xi LX, Zhang H, Wang P et al (2018) Comparative investigation of microstructure, mechanical properties and strengthening mechanisms of Al-12Si/TiB2 fabricated by selective laser melting and hot pressing. Ceram Int 44:17635–17642. https://doi.org/10.1016/j.ceramint.2018.06.225

    Article  CAS  Google Scholar 

  162. Gao C, Liu Z, Xiao Z et al (2021) Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: microstructural evolution and mechanical properties. J Alloys Compd 853:156722. https://doi.org/10.1016/j.jallcom.2020.156722

    Article  CAS  Google Scholar 

  163. Han Q, Geng Y, Setchi R et al (2017) Macro and nanoscale wear behaviour of Al-Al2O3 nanocomposites fabricated by selective laser melting. Compos Part B Eng 127:26–35. https://doi.org/10.1016/j.compositesb.2017.06.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Karabulut.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulut, Y., Ünal, R. Additive manufacturing of ceramic particle-reinforced aluminum‐based metal matrix composites: a review. J Mater Sci 57, 19212–19242 (2022). https://doi.org/10.1007/s10853-022-07850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07850-0

Navigation