Skip to main content

Advertisement

Log in

Enzymatic modification of eggshell membrane with the application in biomimetic scaffold

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biomimetic scaffolds that induce bone growth in defects have always been the main focus of bone regeneration research. This study was to develop biomineralization scaffolds using eggshell membranes as the bio-template. The structural and mineralizing characteristics of the inner and outer eggshell membrane (IM and OM) before and after alkaline protease and sodium sulfite treatments were investigated. Electron microscopy showed that both the IM and OM had a core-mantel structure. IM had a thinner mantel layer and more uniform fiber network structure than OM, exhibiting small average pore size and high specific surface area. The mineralization of IM and OM only occurred on the fibers surface. However, enzymatic treatment caused partial destruction of the mantel layer, which allowed the formation of mineral crystals. Specifically, the IM and enzyme-treated IM (EIM) fibers had better mineralization potentials than OM and the enzyme-treated OM (EOM), respectively. Hydroxyapatite-accumulated EIM (EIMHA) showed stronger hydrophilicity, higher BSA fixation ability, and simulated tissue fluid absorption ability. Moreover, the EIMHA facilitated the cell adhesion of the MC3T3-E1 cells and showed a strong cell proliferation activity. In summary, eggshell membranes treated with alkaline protease and sodium sulfite has a high potential to be used as a biomimetic mineralization scaffold.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ESM:

Eggshell membrane

IM:

Inner eggshell membrane

OM:

Outer eggshell membrane

LM:

Limiting membrane

OMHA:

Mineralized outer eggshell membrane

IMHA:

Mineralized inner eggshell membrane

EOMHA:

Enzyme-hydrolyzed OM/ hydroxyapatite

EIMHA:

Enzyme-hydrolyzed IM/hydroxyapatite

References

  1. Wang X, Langelier B, Shah FA et al (2018) Biomineralization at titanium revealed by correlative 4d tomographic and spectroscopic methods. Adv Mater Interfaces 5:1800262. https://doi.org/10.1002/admi.201800262

    Article  CAS  Google Scholar 

  2. Hu Y, Cao S, Chen J et al (2020) Biomimetic fabrication of icariin loaded nano hydroxyapatite reinforced bioactive porous scaffolds for bone regeneration. Chem Eng J 394:124895. https://doi.org/10.1016/j.cej.2020.124895

    Article  CAS  Google Scholar 

  3. Wu W, He L, Liang Y et al (2019) Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem 284:80–89. https://doi.org/10.1016/j.foodchem.2019.01.103

    Article  CAS  Google Scholar 

  4. Fu X, Liu Q, Tang C et al (2019) Study on structural, rheological and foaming properties of ovalbumin by ultrasound-assisted glycation with xylose. Ultrason Sonochem 58:104644. https://doi.org/10.1016/j.ultsonch.2019.104644

    Article  CAS  Google Scholar 

  5. Chen Y, Qiu N, Ma B et al (2022) Preparation and characterization of a novel antibacterial hydrogel based on thiolated ovalbumin/gelatin with silver ions. Innov Food Sci Emerg Technol 78:103007. https://doi.org/10.1016/j.ifset.2022.103007

    Article  CAS  Google Scholar 

  6. Huang Y, Ji Y, Kang Z et al (2020) Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration. Chem Eng J 395:125098. https://doi.org/10.1016/j.cej.2020.125098

    Article  CAS  Google Scholar 

  7. Yang R, Geng F, Huang X et al (2020) Integrated proteomic, phosphoproteomic and N-glycoproteomic analyses of chicken eggshell matrix. Food Chem 330:127167. https://doi.org/10.1016/j.foodchem.2020.127167

    Article  CAS  Google Scholar 

  8. Du T, Niu X, Hou S et al (2019) Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers. J Biomed Mater Res - Part A 107:2403–2413. https://doi.org/10.1002/jbm.a.36747

    Article  CAS  Google Scholar 

  9. Zhou Y, Kang L, Niu X et al (2016) Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies. FEMS Microbiol Lett 363:1–7. https://doi.org/10.1093/femsle/fnw120

    Article  CAS  Google Scholar 

  10. Niu LN, Jee SE, Jiao K et al (2017) Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater 16:370–378. https://doi.org/10.1038/nmat4789

    Article  CAS  Google Scholar 

  11. Li Y, Wang A, Bai Y, Wang S (2017) Acriflavine-immobilized eggshell membrane as a new solid-state biosensor for Sudan I-IV detection based on fluorescence resonance energy transfer. Food Chem 237:966–973. https://doi.org/10.1016/j.foodchem.2017.06.050

    Article  CAS  Google Scholar 

  12. Mohammadi R, Mohammadifar MA, Mortazavian AM et al (2016) Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM). Food Chem 190:186–193. https://doi.org/10.1016/j.foodchem.2015.05.073

    Article  CAS  Google Scholar 

  13. Li J, Ng DHL, Ma R et al (2017) Eggshell membrane-derived MgFe2O4 for pharmaceutical antibiotics removal and recovery from water. Chem Eng Res Des 126:123–133. https://doi.org/10.1016/j.cherd.2017.07.005

    Article  CAS  Google Scholar 

  14. Li X, Ma M, Ahn DU, Huang X (2019) Preparation and characterization of novel eggshell membrane-chitosan blend films for potential wound-care dressing: from waste to medicinal products. Int J Biol Macromol 123:477–484. https://doi.org/10.1016/j.ijbiomac.2018.10.215

    Article  CAS  Google Scholar 

  15. Ahmed TAE, Suso HP, Maqbool A, Hincke MT (2019) Processed eggshell membrane powder: bioinspiration for an innovative wound healing product. Mater Sci Eng C 95:192–203. https://doi.org/10.1016/j.msec.2018.10.054

    Article  CAS  Google Scholar 

  16. Li N, NiuQi LY et al (2011) Subtleties of biomineralisation revealed by manipulation of the eggshell membrane. Biomaterials 32:8743–8752. https://doi.org/10.1016/j.biomaterials.2011.08.007

    Article  CAS  Google Scholar 

  17. Zhao QC, Zhao JY, Ahn DU et al (2019) Separation and identification of highly efficient antioxidant peptides from eggshell membrane. Antioxidants 8:495. https://doi.org/10.3390/antiox8100495

    Article  CAS  Google Scholar 

  18. Tas AC, Bhaduri SB (2004) Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10x simulated body fluid. J Mater Res 19:2742–2749. https://doi.org/10.1557/JMR.2004.0349

    Article  CAS  Google Scholar 

  19. Cao Z, Shen Z, Luo X et al (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr Polym 166:320–328. https://doi.org/10.1016/j.carbpol.2017.03.012

    Article  CAS  Google Scholar 

  20. Köhler C, Frei M, Zengerle R, Kerzenmacher S (2014) Performance loss of a pt-based implantable glucose fuel cell in simulated tissue and cerebrospinal fluids. ChemElectroChem 1:1895–1900. https://doi.org/10.1002/celc.201402138

    Article  CAS  Google Scholar 

  21. Ma B, Chen Y, Hu G et al (2022) Ovotransferrin antibacterial peptide coupling mesoporous silica nanoparticle as an effective antibiotic delivery system for treating bacterial infection in vivo. ACS Biomater Sci Eng 8:109–118. https://doi.org/10.1021/acsbiomaterials.1c01267

    Article  CAS  Google Scholar 

  22. Ma B, Guo Y, Fu X, Jin Y (2020) Identification and antimicrobial mechanisms of a novel peptide derived from egg white ovotransferrin hydrolysates. Lwt 131:109720. https://doi.org/10.1016/j.lwt.2020.109720

    Article  CAS  Google Scholar 

  23. Li Y, Li Y, Liu S et al (2018) New zonal structure and transition of the membrane to mammillae in the eggshell of chicken Gallus domesticus. J Struct Biol 203:162–169. https://doi.org/10.1016/j.jsb.2018.04.006

    Article  Google Scholar 

  24. Wong M, Hendrix MJC, von der Mark K et al (1984) Collagen in the egg shell membranes of the hen. Dev Biol 104:28–36. https://doi.org/10.1016/0012-1606(84)90033-2

    Article  CAS  Google Scholar 

  25. Sah MK, Rath SN (2016) Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater Sci Eng C 67:807–821

    Article  CAS  Google Scholar 

  26. Wadke P, Chhabra R, Jain R, Dandekar P (2017) Silver-embedded starch-based nanofibrous mats for soft tissue engineering. Surfaces and Interfaces 8:137–146. https://doi.org/10.1016/j.surfin.2017.05.008

    Article  CAS  Google Scholar 

  27. Elsayed NA, Zada S, Allam NK (2019) Mineralization of electrospun gelatin/CaCO 3 composites: a new approach for dental applications. Mater Sci Eng C 100:655–664. https://doi.org/10.1016/j.msec.2019.03.049

    Article  CAS  Google Scholar 

  28. Chantre CO, Gonzalez GM, Ahn S et al (2019) Porous biomimetic hyaluronic acid and extracellular matrix protein nanofiber scaffolds for accelerated cutaneous tissue repair. ACS Appl Mater Interfaces 11:45498–45510. https://doi.org/10.1021/acsami.9b17322

    Article  CAS  Google Scholar 

  29. Chen X, Zhu L, Wen W et al (2019) Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity. Colloids Surf B Biointerfaces 179:299–308. https://doi.org/10.1016/j.colsurfb.2019.04.009

    Article  CAS  Google Scholar 

  30. Sabu U, Rashad M, Logesh G et al (2018) Development of biomorphic alumina using egg shell membrane as bio-template. Ceram Int 44:4615–4621. https://doi.org/10.1016/j.ceramint.2017.11.173

    Article  CAS  Google Scholar 

  31. Storck S, Bretinger H, Maier WF (1998) Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A Gen 174:137–146. https://doi.org/10.1016/S0926-860X(98)00164-1

    Article  CAS  Google Scholar 

  32. Biranje SS, Madiwale PV, Patankar KC et al (2019) Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int J Biol Macromol 121:936–946. https://doi.org/10.1016/j.ijbiomac.2018.10.125

    Article  CAS  Google Scholar 

  33. Dong Q, Su H, Xu J et al (2007) Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate. Mater Lett 61:2714–2717. https://doi.org/10.1016/j.matlet.2006.06.091

    Article  CAS  Google Scholar 

  34. Zhang Y, Liu Y, Ji X et al (2011) Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. Colloids Surfaces B Biointerfaces 82:490–496. https://doi.org/10.1016/j.colsurfb.2010.10.006

    Article  CAS  Google Scholar 

  35. Pillai MM, Akshaya TR, Elakkiya V et al (2015) Egg shell membrane-a potential natural scaffold for human meniscal tissue engineering: An in vitro study. RSC Adv 5:76019–76025. https://doi.org/10.1039/c5ra09959e

    Article  CAS  Google Scholar 

  36. Huh HW, Zhao L, Kim SY (2015) Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr Polym 126:130–140. https://doi.org/10.1016/j.carbpol.2015.03.033

    Article  CAS  Google Scholar 

  37. Ghazanfari S, Khademhosseini A, Smit TH (2016) Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 97:74–84

    Article  CAS  Google Scholar 

  38. Han L, Wang M, Sun H et al (2017) Porous titanium scaffolds with self-assembled micro/nano-hierarchical structure for dual functions of bone regeneration and anti-infection. J Biomed Mater Res - Part A 105:3482–3492. https://doi.org/10.1002/jbm.a.36178

    Article  CAS  Google Scholar 

  39. Raines AL, Berger MB, Patel N et al (2019) VEGF-A regulates angiogenesis during osseointegration of Ti implants via paracrine/autocrine regulation of osteoblast response to hierarchical microstructure of the surface. J Biomed Mater Res - Part A 107:423–433. https://doi.org/10.1002/jbm.a.36559

    Article  CAS  Google Scholar 

  40. Niu X, Wang L, Tian F et al (2016) Shear-mediated crystallization from amorphous calcium phosphate to bone apatite. J Mech Behav Biomed Mater 54:131–140. https://doi.org/10.1016/j.jmbbm.2015.09.024

    Article  CAS  Google Scholar 

  41. Li X, Cai Z, Ahn DU, Huang X (2019) Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids Surfaces B Biointerfaces 183:11049. https://doi.org/10.1016/j.colsurfb.2019.110449

    Article  CAS  Google Scholar 

  42. Liu G, Li Y, Yang S et al (2019) DOPA-IGF-1 coated HA/PLGA microspheres promoting proliferation and osteoclastic differentiation of rabbit bone mesenchymal stem cells. Chem Res Chinese Univ 35:514–520. https://doi.org/10.1007/s40242-019-9007-7

    Article  CAS  Google Scholar 

  43. Qi R, Cao X, Shen M et al (2012) Biocompatibility of electrospun halloysite nanotube-doped poly(Lactic-co-Glycolic Acid) composite nanofibers. J Biomater Sci Polym Ed 23:299–313. https://doi.org/10.1163/092050610X550340

    Article  CAS  Google Scholar 

  44. Li X, Tu H, Huang M et al (2017) Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. Int J Biol Macromol 102:789–795. https://doi.org/10.1016/j.ijbiomac.2017.04.076

    Article  CAS  Google Scholar 

  45. Cheng G, Dai J, Dai J et al (2021) Extracellular matrix imitation utilizing nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chem Eng J 410:128379. https://doi.org/10.1016/j.cej.2020.128379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Natural Science Foundation of China (32072237, 32072158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 326 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Zhao, Qc., Ahn, D.U. et al. Enzymatic modification of eggshell membrane with the application in biomimetic scaffold. J Mater Sci 57, 14993–15007 (2022). https://doi.org/10.1007/s10853-022-07557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07557-2

Navigation