Skip to main content

Advertisement

Log in

Eggshell Waste: A Gold Mine for Sustainable Bioceramics

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Bioceramics derived from natural sources such as eggshell, bovine bone, fish bone, etc. have the benefit of inheriting some of the properties of the raw materials like optimal composition, similar morphology, etc., along with the advantages of unlimited worldwide availability at a very low raw material cost. The eggshell waste is an inexpensive source of calcium, and so, a great deal of effort has been made to exploit this resource as value-added calcium phosphates (CaP) such as hydroxyapatite, tricalcium phosphate, tetracalcium phosphate, etc., which are the most widely used for bone and dental applications. Eggshell-derived CaPs were found to have minor amounts of biologically relevant ions inherited from the eggshell. As these ions are crucial for bio-mineralization of eggshell, the potential of eggshell derived multi-ion-substituted CaPs for bone regenerative applications has been reviewed. The development of eggshell-derived CaP nanocarriers for the delivery of drugs and protein has been summarised. The role of CaP precursors from eggshells in improving the material and biological properties of bone cement formulations has been highlighted. The advantages of eggshell CaP-based scaffolds in tissue engineering and regenerative medicine have also been summarised. Overall, the current article aims to provide an insight into the recent medical applications of eggshell-based calcium phosphate bioceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Similar content being viewed by others

References

  1. Ben-Nissan B (2003) Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288

    Article  CAS  Google Scholar 

  2. Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 2012:983062

    Article  CAS  Google Scholar 

  3. Laohavisuti N, Boonchom B, Boonmee W, Chaiseeda K, Seesanong S (2021) Simple recycling of biowaste eggshells to various calcium phosphates for specific industries. Sci Rep 11:15143

    Article  CAS  Google Scholar 

  4. Waheed M, Yousaf M, Shehzad A, Inam-Ur-Raheem M, Khan MKI, Khan MR, Ahmad N, Abdullah AAM (2020) Channeling eggshell waste to valuable and utilizable products: a comprehensive review. Trends Food Sci Tech 106:78–90

    Article  CAS  Google Scholar 

  5. Li-Chang ECY, Kim HO (2008) Structure and chemical composition of eggs. In: Mine Y (ed) Egg Bioscience and Biotechnology. Wiley, USA, pp 1–96

    Google Scholar 

  6. Laca A, Laca A, Díaz M (2017) Eggshell waste as catalyst: a review. J Environ Manag 197:351–359

    Article  CAS  Google Scholar 

  7. Balaz M, Boldyreva EV, Rybin D, Pavlovic S, Rodríguez-Padron D, Mudrinic T, Luque R (2021) State-of-the-art of eggshell waste in materials science: recent advances in catalysis, pharmaceutical applications, and mechanochemistry. Front Bioeng Biotechnol 8:612567. https://doi.org/10.3389/fbioe.2020.612567

    Article  Google Scholar 

  8. Prabakaran K, Balamurugan A, Rajeswari S (2005) Development of calcium phosphate based apatite from hen’s eggshell. Bull Mater Sci 28:115–119

    Article  CAS  Google Scholar 

  9. Siva Rama Krishna D, Seshadri SK, Sampath Kumar TS (2007) A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mat Sci Mater Med 18:1735–1743

    Article  CAS  Google Scholar 

  10. Siddharthan A, Sampath Kumar TS, Seshadri SK (2009) Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomed Mater 4:045010

    Article  CAS  Google Scholar 

  11. Suresh Kumar G, Girija EK (2013) Flower-like hydroxyapatite nanostructure obtained from eggshell: a candidate for biomedical applications. Ceram Int 39:8293–8299

    Article  CAS  Google Scholar 

  12. Wen-Fu Ho H-CH, Hsu SK, Hung CW, Wu SC (2013) Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int 39:6467–6473

    Article  CAS  Google Scholar 

  13. Lee SJ, Oh SH (2003) Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid. Mat Let 57:4570–4574

    Article  CAS  Google Scholar 

  14. Sasikumar S, Vijayaraghavan R (2006) Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method. Trends Biomater Artif Organs 19:70–73

    Google Scholar 

  15. Rivera EM, Araiza M, Brostow W, Castano VM, Dıaz-Estrada JR, Hernandez R, Rodrıguez JR (1999) Synthesis of hydroxyapatite from eggshells. Mat Let 41:128–134

    Article  CAS  Google Scholar 

  16. Hui P, Meena SL, Singh G, Agarawal RD, Prakash S (2010) Synthesis of hydroxyapatite bio-ceramic powder by hydrothermal method. J Miner Mater Char Engg 9:683–692

    Google Scholar 

  17. Roopavath UK, Sah MK, Panigrahi BB, Rath SN (2019) Mechanochemically synthesized phase stable and biocompatible β-tricalcium phosphate from avian eggshell for the development of tissue ingrowth system. Ceram Int 45:12910–12919. https://doi.org/10.1016/j.ceramint.2019.03.217

    Article  CAS  Google Scholar 

  18. Jayasree R, Sampath Kumar TS, Pavani Siva Kavya K, Rakesh Nankar P, Mukesh D (2015) Self setting bone cement formulations based on egg shell derived tetracalcium phosphate bioceramics. Bioceram Dev Appl 5:1–6

    Google Scholar 

  19. Bee SL, Hamid ZAA (2020) Hydroxyapatite derived from food industry bio-wastes: syntheses, properties and its potential multifunctional applications. Ceram Int 46:17149–17175

    Article  CAS  Google Scholar 

  20. Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine review. Materials 2:399–498

    Article  CAS  Google Scholar 

  21. Van Blitterswijk CA, Hesseling SC, Grote JJ, Koerten HK, de Groot K (1990) The biocompatibility of hydroxyapatite ceramic: a study of retrieved human middle ear implants. J Biomed Mater Res 24:433–453

    Article  Google Scholar 

  22. Siddharthan A, Seshadri SK, Kumar TSS (2004) Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J Mater Sci Mater Med 15:1279–1284

    Article  CAS  Google Scholar 

  23. Rehault-Godbert S, Guyot N, Nys Y (2019) The golden egg: nutritional value, bioactivities and emerging benefits for human health. Nutrients 11:684. https://doi.org/10.3390/nu11030684

    Article  CAS  Google Scholar 

  24. Moseke UG (2010) Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater 6:3815–3823

    Article  CAS  Google Scholar 

  25. Gbureck JEB, Hofmann MP, Thull R (2005) Nanocrystalline tetracalcium phosphate cement. J Dent Res 83:425–428

    Article  Google Scholar 

  26. Burguera FG, Chow LC (2004) A water setting tetracalcium phosphate–dicalcium phosphate dihydrate cement. J Biomed Mater Res 71:275–282

    Article  CAS  Google Scholar 

  27. Takagi S, Chow LC, Ishikawa K (1998) Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19:1593–1599

    Article  CAS  Google Scholar 

  28. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Article  CAS  Google Scholar 

  29. Arcos D, Vallet-Regi M (2013) Bioceramics for drug delivery. Acta Mater 61:890–911

    Article  CAS  Google Scholar 

  30. Yang L, Sheldon BW, Webster TJ (2010) Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull 89:24–31

    CAS  Google Scholar 

  31. Uskokovic V, Uskokovic DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res Appl Biomater 96B:152–191

    Article  CAS  Google Scholar 

  32. McLaren A (2004) Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res 427:101–106

    Article  Google Scholar 

  33. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  CAS  Google Scholar 

  34. Kumar TSS, Madhumathi K (2016) Antibiotic delivery by nanobioceramics. Ther Deliv 7(8):573–588

    Article  CAS  Google Scholar 

  35. Caplin JD, García AJ (2019) Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater 93:2–11. https://doi.org/10.1016/j.actbio.2019.01.015

    Article  CAS  Google Scholar 

  36. Verma AH, Kumar TSS, Madhumathi K, Rubaiya Y, Ramalingan M, Doble M (2019) Curcumin releasing eggshell derived carbonated apatite nanocarriers for combined anti-cancer, anti-inflammatory and bone regenerative therapy. J Nanosci Nanotechnol 19:6872–6880

    Article  CAS  Google Scholar 

  37. Jayasree R, Madhumathi K, Ramalingam M, Nankar RP, Doble M, Sampath Kumar TS (2018) Development of egg shell derived carbonated apatite nanocarrier system for drug delivery. J Nanosci Nanotech 18:2318–2324

    Article  CAS  Google Scholar 

  38. Sampath Kumar TS, Madhumathi K, Rajkamal B, Zahetha S, Malar AR, Bai SA (2014) Enhanced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers. Colloids Surf B Biointerfaces 123:542–548

    Article  CAS  Google Scholar 

  39. Sampath Kumar TS, Madhumathi K (2021) Selective delivery of antibiotics and protein by eggshell derived apatitic nanocarriers. Trends Biomater Artif Organs 35:30–35

    Google Scholar 

  40. Kattimani VS, Chakravarthi PS, Kanumuru NR, Subbarao VV, Siddharthan A, Sampath Kumar TS, Prasad LK (2014) Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. J Int Oral Health 6:15–19

    Google Scholar 

  41. Kim SH, Kim W, Cho JH, Oh NS, Lee MH (2008) Comparison of bone formation in rabbits using hydroxyapatite and β-tricalcium phosphate scaffolds fabricated from egg shells. Adv Mat Res 47–50:999–1002

    Google Scholar 

  42. Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB (2012) Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 64:1090–1110

    Article  CAS  Google Scholar 

  43. Dorozhkin S (2013) Calcium orthophosphate-based bioceramics. Materials 6:3840–3942

    Article  CAS  Google Scholar 

  44. Tamimi F, Sheikh Z, Barralet J (2012) Dicalcium phosphate cements: brushite and monetite. Acta Biomater 8:474–487

    Article  CAS  Google Scholar 

  45. Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K (1995) In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 16:855–860

    Article  CAS  Google Scholar 

  46. Ishikawa K, Takagi S, Chow LC, Ishikawa IY (1995) Properties and mechanisms of fast-setting calcium phosphate cements. J Mater Sci Mater Med 6:528–533

    Article  CAS  Google Scholar 

  47. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF (2009) Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater 5:1233–1240

    Article  CAS  Google Scholar 

  48. Boccaccio A (2021) Design of materials for bone tissue scaffolds. Materials 14:5985. https://doi.org/10.3390/ma14205985

    Article  CAS  Google Scholar 

  49. Lett A, Sagadevan S, Fatimah I et al (2021) Recent advances in natural polymer-based hydroxyapatite scaffolds: properties and applications. Eur Polym J 148:110360. https://doi.org/10.1016/j.eurpolymj.2021.110360

    Article  CAS  Google Scholar 

  50. Baskar K, Saravana Karthikeyan B, Gurucharan I, Mahalaxmi S, Rajkumar G, Dhivya V, Kishen A (2022) Eggshell derived nano-hydroxyapatite incorporated carboxymethyl chitosan scaffold for dentine regeneration: a laboratory investigation. Int Endod J 55(1):89–102. https://doi.org/10.1111/iej.13644

    Article  Google Scholar 

  51. Constanda S, Silvia Stan M, Ciobanu CS, Motelica-Heino M, Guegan R, Lafdi K, Dinischiotu A, Predoi D (2016) Carbon nanotubes-hydroxyapatite nanocomposites for an improved osteoblast cell response. J Nanomater 2016:1–10. https://doi.org/10.1155/2016/3941501

    Article  CAS  Google Scholar 

  52. Apalangya VA, Rangari VK, Tiimob BJ, Jeelani S, Samuel T (2019) Eggshell based nano-engineered hydroxyapatite and poly(lactic) acid electrospun fibers as potential tissue scaffold. Int J Biomater 2019:6762575. https://doi.org/10.1155/2019/6762575

    Article  CAS  Google Scholar 

  53. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 23:4. https://doi.org/10.1186/s40824-018-0149-3

    Article  Google Scholar 

  54. Levingstone TJ, Herbaj S, Dunne NJ (2019) Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials 9(11):1570. https://doi.org/10.3390/nano9111570

    Article  CAS  Google Scholar 

  55. Raucci MG, Guarino V, Ambrosio L (2012) Biomimetic strategies for bone repair and regeneration. J Funct Biomater 3:688–705. https://doi.org/10.3390/jfb3030688

    Article  CAS  Google Scholar 

  56. Padmanabhan SK, Salvatore L, Gervaso F et al (2015) Synthesis and characterization of collagen scaffolds reinforced by eggshell derived hydroxyapatite for tissue engineering. J Nanosci Nanotechnol 15(1):504–509. https://doi.org/10.1166/jnn.2015.9489

    Article  CAS  Google Scholar 

  57. Kweon H, Lee KG, Chae CH, Balázsi C, Min SK, Kim JY, Choi JY, Kim SG (2011) Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. J Oral Maxillofac Surg 69(6):1578–1586. https://doi.org/10.1016/j.joms.2010.07.062

    Article  Google Scholar 

  58. Trakoolwannachai V, Kheolamai P, Ummartyotin S (2019) Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Compos B Eng 173:106974. https://doi.org/10.1016/j.compositeb.2019.106974

    Article  CAS  Google Scholar 

  59. Dadhich P, Das B, Pal P, Srivas PK, Dutta J, Ray S, Dhara S (2016) A simple approach for eggshells based 3D-printed osteoinductive multi-phasic calcium phosphate scaffold. ACS Appl Mater Interfaces 8(19):11910–11924. https://doi.org/10.1021/acsami.5b11981

    Article  CAS  Google Scholar 

  60. Sayed M, El-Maghraby HF, Bondioli F, Naga SM (2018) 3D carboxymethyl cellulose/hydroxyapatite (CMC/HA) scaffold composites based on recycled eggshell. J Appl Pharm Sci 8(03):023–030. https://doi.org/10.7324/JAPS.2018.8304

    Article  CAS  Google Scholar 

  61. Chuysinuan P, Nooeaid P, Thanyacharoen T, Techasakul S, Pavasant P, Kanjanamekanant K (2021) Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. Int J Biol Macromol 193(Pt A):799–808. https://doi.org/10.1016/j.ijbiomac.2021.10.132

    Article  CAS  Google Scholar 

  62. Mehedi Hasan M, Nuruzzaman Khan M, Haque P, Rahman MM (2018) Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Int J Biol Macromol 117:1110–1117. https://doi.org/10.1016/j.ijbiomac.2018.06.020

    Article  CAS  Google Scholar 

  63. Arslan YE, Sezgin Arslan T, Derkus B, Emregul E, Emregul KC (2017) Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: from waste to regenerative medicine products. Colloids Surf B Biointerfaces 154:160–170. https://doi.org/10.1016/j.colsurfb.2017.03.034

    Article  CAS  Google Scholar 

  64. Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei D, Rezai Rad M, Khojasteh A (2019) Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: fabrication and characterization. Mater Sci Eng C Mater Biol Appl 100:564–575. https://doi.org/10.1016/j.msec.2019.03.003

    Article  CAS  Google Scholar 

  65. Patel DK, Jin B, Dutta SD, Lim KT (2020) Osteogenic potential of human mesenchymal stem cells on eggshells-derived hydroxyapatite nanoparticles for tissue engineering. J Biomed Mater Res 108:1953–1960

    Article  CAS  Google Scholar 

  66. Lala SD, Barua E, Deb P, Deoghare AB (2021) Physico-chemical and biological behaviour of eggshell bio-waste derived nano-hydroxyapatite matured at different aging time. Mater Today Commun 27:102443

    Article  CAS  Google Scholar 

  67. Horta MKDS, Moura FJ, Aguilar MS, Westin CB, De Campos JB, Peripolli SB, Ramos VS, Navarro MI, Archanjo BS (2020) Nanostructured hydroxyapatite from Hen´s eggshells using sucrose as a template. Mater Res 23(6):1–9

    Article  CAS  Google Scholar 

  68. Sultana S, Hossain MS, Mahmuda M, Mobaraka MB, Kabira MH, Sharmina N, Ahmed S (2021) UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity. RSC Adv 11:3686–3694

    Article  CAS  Google Scholar 

  69. Cestari F, Agostinacchio F, Galotta A, Chemello G, Motta A, Sglavo VM (2021) Nano-hydroxyapatite derived from biogenic and bioinspired calcium carbonates: synthesis and in vitro bioactivity. Nanomater 11(2):264

    Article  CAS  Google Scholar 

  70. Durmus E, Celik I, Aydin MF, Yildirim G, Sur E (2008) Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. J Biomed Mater Res B Appl Biomater 86:82–89

    Article  CAS  Google Scholar 

  71. Dupoirieux L, Neves M, Pourquier D (2000) Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: an experimental study. J Oral Maxillofac Surg 58:40–46

    Article  CAS  Google Scholar 

  72. Park JW, Bae SR, Suh JY, Lee DH, Kim SH (2008) Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res 87A:203–214

    Article  CAS  Google Scholar 

  73. Lee SW, Kim SG, Balazsi C, Chae WS, Lee HO (2012) Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 113:348–355

    Article  Google Scholar 

  74. Lee SW, Balazsi C, Balazsi K, Seo DH, Kim HS, Kim CH, Kim SG (2014) Comparative study of hydroxyapatite prepared from seashells and eggshells as a bone graft material. Tissue Eng Regen Med 11:113–120

    Article  CAS  Google Scholar 

  75. Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439–1451

    Article  CAS  Google Scholar 

  76. Jayasree R, Kumar TSS, Venkateswari R, Nankar RP, Doble M (2019) Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential. J Mater Sci Mater Med 30:113. https://doi.org/10.1007/s10856-019-6315-x

    Article  CAS  Google Scholar 

  77. Kattimani VS, Chakravarthi PS, Kanumuru NR, Subbarao VV, Sidharthan A et al (2014) Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. J Int Oral Health 6:15–19

    Google Scholar 

  78. Kattimani V, Lingamaneni KP, Chakravarthi PS, Kumar TS, Siddharthan A (2016) Eggshell-derived hydroxyapatite: a new era in bone regeneration. J Craniofac Surg 27:112–117. https://doi.org/10.1097/SCS.0000000000002288

    Article  Google Scholar 

  79. Opris H, Bran S, Dinu C, Baciut M, Prodan DA, Mester A, Baciut G (2020) Clinical applications of avian eggshell-derived hydroxyapatite. Bosn J Basic Med Sci 20:430–437

    CAS  Google Scholar 

  80. Jayasree R, Velkumar Y, Sampath Kumar TS (2017) Egg shell derived apatite cement for the treatment of angular periodontal defects: a preliminary clinical and radiographic assessment. Dent Oral Craniofac Res 4:1–4

    Article  Google Scholar 

  81. Setoguchi T, Izumi Y, Oda S, Ishikawa I, Ryder MI, Veber Y (2005) Injectable calcium-phosphate bone cement for periodontal bone defect. In: IADR/AADR/CADR 83rd general session, Baltimore, March 9–12 2005; Abstract 1179:Seq-132

Download references

Acknowledgements

The authors acknowledge generous funding support by the Department of Biotechnology (DBT), Government of India in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Sampath Kumar.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.S.S., Madhumathi, K. & Jayasree, R. Eggshell Waste: A Gold Mine for Sustainable Bioceramics. J Indian Inst Sci 102, 599–620 (2022). https://doi.org/10.1007/s41745-022-00291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00291-3

Keywords

Navigation