Skip to main content

Advertisement

Log in

The synthesis of eggshell-derived nano- and microscale hydroxyapatite bioceramic bone grafts

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Biografts were produced by adding the ground recycled eggshell powder at different ratios of micron and nanoscale hydroxyapatite (HA) powder. The effects of different wt% eggshell and HA powders on morphological and mechanical properties of the sol–gel-derived bone grafts were evaluated. The produced grafts were characterized via XRD, FTIR, SEM, EDX and mechanical tests. The addition of eggshell at different rates into the HA increased the mechanical properties of the produced biografts. Also, it was determined that the biograft M-H30Y40 had the maximum compression stress (190 MPa) and biograft N-H30Y40 had the maximum hardness (6.31 GPa), while the biograft M-H30Y40 had the minimum hardness (2.96 GPa) and N-H30Y30 had the minimum compressive stress (60.7 MPa). A uniform grain distribution was observed in nano- and microscale HA biografts. Non-porous structure was formed for microscale HA with eggshell-derived powder. However, low amount of porous structure was developed with nanoscale HA where the porosity decreased with increased wt% eggshell powder.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams DF (1987) Chester, England, March 3–5, 1986, Elsevier, New York, pp 4–97

  2. Williams DF (2008) Biomaterials 29:2941–2953

    Article  Google Scholar 

  3. Hoepfner TP, Case ED (2000) Bioceramics: materials and applications III. Cer Trans 110:53–54

    Google Scholar 

  4. Aksakal B, Demirel M (2015) Ceram Int Part B 41–3:4531–4537

    Article  Google Scholar 

  5. Demirel M, Aksakal B (2015) Ceram Int. doi:10.1016/j.ceramint.2015.03.023

    Google Scholar 

  6. Balazsi C, Weber F, Köver Z, Horvath E, Nemeth C (2007) J Eur Cer Soc 27:1601–1606

    Article  Google Scholar 

  7. Rivera EM, Araiza M, Brostow W, Castano VM, Diaz-Estrada JR, Rogelio Rodriguez (1990) J Mater Lett 41:128–134

  8. Rocha JHG, Lemos AF, Agathopoulos S, Kannan S, Valerio P, Ferreira JMF (2005) Wiley Interscience

  9. Veljovic D, Jancic-Hajneman R, Balac I, Jokic B, Putic S, Petrovic R, Janackovic D (2011) Cer Int 37:471–479

    Article  Google Scholar 

  10. Salman S, Gunduz O, Yilmaz S, Öveçoğlu ML, Snyder RL, Agathopoulos S, Oktar FN (2009) Cer Int 35:2965–2971

    Article  Google Scholar 

  11. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2004) Biomaterials 25:2331–2339

    Article  Google Scholar 

  12. Clark AE, Hench LL (1994) J Biomed Mater Res 28:693–698

    Article  Google Scholar 

  13. Hench LL (1997) Curr Opin Solid State Mater Sci 2:604–610

    Article  Google Scholar 

  14. Hench LL, Paschall (1973) J Biomed Mater Res Symp 4:25–42

  15. Hench LL Paschall HA (1974) J Biomed Mater Res Symp, 5(part 1) 49–64

  16. Gatti AM, Valdre G, Andersson OH (1994) Biomaterials 15:208–212

    Article  Google Scholar 

  17. Murugan R, Rao KP (2002) Trends Biomater Artif Organs 16:43–45

    Google Scholar 

  18. Prabakan K, Balamurugan A, Rajeswarı S (2005) Bull Mater Sci 28–2:115–119

    Article  Google Scholar 

  19. Cai S, Zhang WJ, Xu GH, Li JY, Wang DM, Jiang W (2008) J Non Cryst Solids 355(4–5):273–279. doi:10.1016/j.jnoncrysol.2008.11.008

    Google Scholar 

  20. Hammas I, Horchani-Naifer K, Ferid M (2010) J Rare Earths 28–3:321

    Article  Google Scholar 

  21. Dennymol PV, Rani J (2014) Int J Sci Technol 2:179–185

    Article  Google Scholar 

  22. Rivera EM, Araiza M, Brostow W, Castano VM, Diaz-Estrada JR, Hernandez R, Rogelio Rodriguez J (1999) J Mater Lett 41:128–134

    Article  Google Scholar 

  23. Hui P, Meena SL, Singh G, Agarawal RD, Prakash S (2010) J Min Mater Char Eng 9–8:683–692

    Google Scholar 

  24. Lee SJ, Yoon YS, Lee MH, Oh NS (2007) Mater Lett 61–6:1279–1282

    Article  Google Scholar 

  25. Evis Z, Webster TJ (2011) Adv Appl Cer Struct Funct Biocer 110:311–320

    Article  Google Scholar 

  26. Chen QZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27:2414–2425

    Article  Google Scholar 

  27. Park BJ, Lakes SR (1992) Biomaterials an introduction. Plenum Press, New York

    Book  Google Scholar 

  28. Tirrell M, Kokkoli E (2002) Surf Sci 500:61–83

    Article  Google Scholar 

  29. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) J Biomed Mater Res 63–4:408–412

    Article  Google Scholar 

  30. Lu JX, Flautre B, Anselme K, Hardouin P (1999) J Mater Sci Mater Med 10:111–120

    Article  Google Scholar 

  31. Temenoff JS, Lu L, Mikos AG (2000) In: Davies JE (ed) Bone engineering. EM Squared, Toronto, pp 455–62

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunyamin Aksakal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirel, M., Aksakal, B. The synthesis of eggshell-derived nano- and microscale hydroxyapatite bioceramic bone grafts. J Sol-Gel Sci Technol 78, 126–134 (2016). https://doi.org/10.1007/s10971-015-3915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3915-x

Keywords

Navigation