Skip to main content
Log in

Experimental investigation of the multi-stage micro-deep drawing of pure titanium foils with different grain sizes

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To manufacture micro-drawn cups featuring high CH/CD (cup height/cup diameter ratios) and high quality, a three-stage micro-deep drawing (MDD) system was designed and studied. TA1 pure titanium (Ti) foils with the thickness of 50 μm were annealed at 600–700 °C for 1 h to obtain different grain sizes. Then, the effects of different grain sizes on the deformation behavior of multi-stage MDD and the quality of the formed cups were analyzed. The results show that the as-received pure Ti has a poor formability, suffering a slight fracture problem and significant wrinkling problem of the final drawn cup. At the optimal annealing temperature of 600 °C, the drawn cups show very few wrinkles and a good shape profile. Besides, high CH/CD ratios can be produced for the final drawn cups. Moreover, with the increase in drawing stage, the wrinkling of the cup is significantly reduced due to the "ironing effect" in the multi-stage MDD process. The research can provide a basis for forming high-quality and high CH/CD ratios micro-parts by multi-stage MDD and enrich the knowledge from behavior deformation behavior and product quality assurance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Tao K, Tang LH, Wu J, Lye SW, Hl C, Miao JM (2018) Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity. J Microelectromech S 27(2):276–288. https://doi.org/10.1109/JMEMS.2018.2792686

    Article  CAS  Google Scholar 

  2. Persano A, Quaranta F, Taurino A, Siciliano PA, Iannacci J (2020) Thin film encapsulation for RF MEMS in 5G and modern telecommunication systems. Sensors 20(7):2133. https://doi.org/10.3390/s20072133

    Article  Google Scholar 

  3. Mallik S, Chowdhury D, Chttopadhyay M (2019) Development and performance analysis of a low-cost MEMS microphone-based hearing aid with three different audio amplifiers. Innov Syst Softw Eng 15:17–25. https://doi.org/10.1007/s11334-019-00325-7

    Article  Google Scholar 

  4. Xu J, Wang XW, Wang CJ, Yuan L, Chen WJ, Bao JX, Su Q, Xu ZH, Wang CJ, Wang ZL, Shan DB, Guo B (2020) A Review on Micro Nanoforming to Fabricate Metallic Structures. Adv Mater 33(6): 5. doi: https://doi.org/10.1002/adma.202170044.

  5. Jiang ZY, Zhao JW, Xie HB (2017) Microforming technology. Academic Press

    Google Scholar 

  6. Cao J, Brinksmeier E, Fu MW, Gao RX, Liang B, Merklein M, Schmidt M, Yanagimoto J (2019) Manufacturing of advanced smart tooling for metal forming. CIRP Ann - Manuf Techn 68(2): 22. doi: https://doi.org/10.1016/j.cirp.2019.05.001.

  7. Fu MW, Zheng JY, Meng B (2018) A review of progressive and compoundforming of bulk microparts by using sheet metals. Matec Web Conf 190(2):01001. https://doi.org/10.1051/matecconf/201819001001

    Article  CAS  Google Scholar 

  8. Fu MW, Wang JL (2021) Size effects in multi-scale materials processing and manufacturing. Int J Mach Tool Manu 167:103755. https://doi.org/10.1016/j.ijmachtools.103755

    Article  Google Scholar 

  9. Fang Z, Jiang ZY, Wang XG, Zhou CL, Wei DB, Liu XH (2015) Grain size effect of thickness/average grain size on mechanical behavior, fracture mechanism and constitutive model for phosphor bronze foil. Int J Adv Manuf Technol 79(9–12):1905–1914. https://doi.org/10.1007/s00170-015-6928-2

    Article  Google Scholar 

  10. Jiang ZY, Zhao JW, Lu HN, Wei DB, Manabe KI, Zhao XM, Zhang XM, Wu D (2017) Influences of temperature and grain size on the material deformability in microforming process. Int J Mater Form 10: 753–764. doi: https://doi.org/10.1007/s12289-016-1317-4

  11. Wang CJ, Cheng LD, Liu Y, Zhang H, Wang Y, Shan DB, Guo B (2019) Research on micro-deep drawing process of concial part with ultra-thin copper foil using multi-layered DLC film-coated die. Int J Adv Manuf Technol 100:569–575. https://doi.org/10.1007/s00170-018-2757-4

    Article  Google Scholar 

  12. Çetin ME, Cora ÖN, Sofuoğlu H (2020) Micro deep drawability of the superplasticZn–22Al alloy at a high strain rate and room temperature. J Eng Mater Technol 142(1):011008. https://doi.org/10.1115/1.4044440

    Article  CAS  Google Scholar 

  13. Zha CL, Chen W (2019) Theories and experiments on effects of acoustic energy field in micro-square cup drawing. Int J Adv Manuf Technol 104:4791–4802. https://doi.org/10.1007/s00170-019-04338-1

    Article  Google Scholar 

  14. Zhao JW, Wang T, Jia FH, Li Z, Zhou CL, Huang QX, Jiang ZY (2021) Experimental investigation on micro deep drawing of stainless steel foils with different microstructural characteristics. Chin J Mech-En 34(2):1174. https://doi.org/10.1186/s10033-021-00556-5

    Article  CAS  Google Scholar 

  15. Shimizu T, Ogawa M, Yang M, Manabe KI (2014) Plastic anisotropy of ultra-thin rolled phosphor bronze foils and its thickness strain evolution in micro-deep drawing. Mat Des 56:604–612. https://doi.org/10.1016/j.matdes.2013.11.048

    Article  CAS  Google Scholar 

  16. Gong F, Yang Z, Chen Q, Xie ZW, Yang S (2015) Influences of lubrication conditions and blank holder force on micro deep drawing of C1100 micro conical-cylindrical cup. Precisi Eng 42:224–230. https://doi.org/10.1016/j.precisioneng.2015.05.004

    Article  Google Scholar 

  17. Luo L, Wei DB, Zu GQ, Jiang ZY (2021) Influence of blank holder-die gap on micro-deep drawing of SUS304 cups. Int J Mech Sci 191:106065. https://doi.org/10.1016/j.ijmecsci.2020.106065

    Article  Google Scholar 

  18. Behrens G, Trier FO, Tetzel H, Vollertsen F (2016) Influence of tool geometry variations on the limiting drawing ratio in micro deep drawing. Int J Mater Form 9:253–258. https://doi.org/10.1007/s12289-015-1228-9

    Article  Google Scholar 

  19. Zhang ZC, Chen N, Furushima T, Li B (2018) Deformation behavior of metal foil in micro pneumatic deep drawing process. Proc Manuf 15:1422–1428. https://doi.org/10.1016/j.promfg.2018.07.339

    Article  Google Scholar 

  20. Shimizu T, Murashige Y, Iwaoka S, Yang M, Manabe KI (2013) Scale dependence of adhesion behavior under dry friction in progressive micro-deep drawing. J Solid Mech Mater Eng 7(2):251–263. https://doi.org/10.1299/jmmp.7.251

    Article  Google Scholar 

  21. Zhu CX, Xu J, Yu HP, Shan DB, Guo B (2021) Size effect on the high strain rate micro/meso-tensile behaviors of pure titanium foil. J Mater Res Technol 11:2146–2159. https://doi.org/10.1016/j.jmrt.2021.02.022

    Article  CAS  Google Scholar 

  22. Wang S, Niu L, Chen C, Pang Y, Liao B, Zhong ZH, Lu P, Li P, Wu XD, Coenen JW, Cao LF, Wu YC (2018) Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils. Mater Sci Eng A 730:244–261. https://doi.org/10.1016/j.msea.2018.06.009

    Article  CAS  Google Scholar 

  23. Tang XF, Peng LF, Shi SQ (2019) Fu MW (2019) Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation. Int J Plasticity 118:147–172. https://doi.org/10.1016/j.ijplas.2019.02.004

    Article  CAS  Google Scholar 

  24. Jia FH, Zhao JW, Luo L, Xie HB, Jiang ZY (2017) Experimental and numerical study on micro deep drawing with aluminium-copper composite material. Procedia Eng 207:1051–1056. https://doi.org/10.1016/j.proeng.2017.10.1129

    Article  CAS  Google Scholar 

  25. Gong F, Guo B (2013) Effects of solid lubrication film on SKD11 in micro sheet forming. Surf Coat Technol 232:814–820. https://doi.org/10.1016/j.surfcoat.2013.06.103

    Article  CAS  Google Scholar 

  26. Luo L, Jiang Z, Wei D, Manabe KI, Sato H, He XF, Li PF (2015) An experimental and numerical study of micro deep drawing of SUS304 circular cups. Manuf Rev 2:27. https://doi.org/10.1051/mfreview/2015029

    Article  CAS  Google Scholar 

  27. Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A 528(25–26):7674–7683. https://doi.org/10.1016/j.msea.2011.06.076

    Article  CAS  Google Scholar 

  28. Fang Z, Jiang ZY, Wang XG, Zhou CL, Wei DB, Liu XH (2015) Grain size effect of thickness/average grain size on mechanical behaviour, fracture mechanism and constitutive model for phosphor bronze foil. Int J Adv Manuf Technol 79(9–12):1905–1914. https://doi.org/10.1007/s00170-015-6928-2

    Article  Google Scholar 

  29. Nie DM, Lu Z, Zhang KF (2017) Grain size effect of commercial pure titanium foilson mechanical properties, fracture behaviors and constitutive models. J Mater Eng Perform 26:1283–1292. https://doi.org/10.1007/s11665-017-2559-0

    Article  CAS  Google Scholar 

  30. Gau JT, Teegala S, Huang KM, Lin HTJ (2013) Using micro deep drawing with ironing stages to form stainless steel 304 micro cups. J Manuf Process 15:298–305. https://doi.org/10.1016/j.jmapro.2013.01.009

    Article  Google Scholar 

  31. Ma X, Lapovok R, Gu C, Molotnikov A, Estrin Y, Pereloma EV, Davies CHJ, Hodgson PD (2009) Deep drawing behaviour of ultrafine grained copper: modeling and experiment. J Mater Sci 44:3807–3812. https://doi.org/10.1007/s10853-009-3515-7

    Article  CAS  Google Scholar 

  32. Fu MW, Yang B, Chan WL (2013) Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet. J Mater Processing Technol 213(1):101–110. https://doi.org/10.1016/j.jmatprotec.2012.08.007

    Article  CAS  Google Scholar 

  33. Wang GF, Li Y, Liu SY, Yang JL, Yang M (2018) Micro deep drawing of T2 copper foil using proportional decreased tools. Int J Adv Manuf Technol 95(1–4):277–285. https://doi.org/10.1007/s00170-017-1111-6

    Article  Google Scholar 

  34. Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Design 32(10):4738–4746. https://doi.org/10.1016/j.matdes.2011.06.039

    Article  Google Scholar 

  35. Liu N, Wang Y, He WJ, Chapuis A, Luan BF, Liu Q (2018) Microstructure and textural evolution during cold rolling and annealing of commercially pure titanium sheet. T Nonferr Metal Soc 28(6):1123–1131. https://doi.org/10.1016/S1003-6326(18)64748-X

    Article  CAS  Google Scholar 

  36. Zhao JW, Huo MS, Ma XG, Jia FH, Jiang ZY (2019) Study on edge cracking of copper foils in micro rolling. Mater Sci Eng A 747:53–62. https://doi.org/10.1016/j.msea.2019.01.048

    Article  CAS  Google Scholar 

  37. Molotnikov A, Lapovok R, Gu CF, Davies CHJ, Estrina Y (2012) Size effects in micro cup drawing. Mater Sci Eng A 550:312–319. https://doi.org/10.1016/j.msea.2012.04.079

    Article  CAS  Google Scholar 

  38. Li WT, Fu MW, Wang JL, Meng B (2016) Grain size effect on multi-stage micro deep drawing of micro cup with domed bottom. Int J of Precis Eng and Man 17(6):765–773. https://doi.org/10.1007/s12541-016-0094-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanxi Province Unveils Bidding Project (20201101020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Xing, Y., Yuan, G. et al. Experimental investigation of the multi-stage micro-deep drawing of pure titanium foils with different grain sizes. J Mater Sci 57, 15094–15108 (2022). https://doi.org/10.1007/s10853-022-07556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07556-3

Navigation