Skip to main content
Log in

Virtual diffraction simulations using the quasi-coarse-grained dynamics method to understand and interpret plasticity contributions during in situ shock experiments

  • Invited Viewpoint
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dynamic deformation response of metallic materials has contributions from dislocations, deformation twinning, and plastic deformation. The current state-of-art techniques can detail the complex mechanistic history of deformation modes under shock loading in real-time using in situ X-ray diffraction (XRD). However, the capability of these experiments to unravel plasticity contributions is challenging due to limitations in interpreting results and the lack of validation from atomistic simulations. Molecular dynamics (MD) simulations can successfully capture various deformation modes in metals and complement experiments using simulated diffractograms at various stages of evolution. However, the difference in length and time scales of MD simulations and experiments is a substantial obstacle in completing and interpreting in situ diffractograms. Therefore, the existing modeling methods require various approximations to model defect evolution and interaction at the mesoscales. However, while using approximations to correlate the peak broadening behavior to the density of dislocations or the shifts/splitting due to the presence of twins, the interpretations of the plasticity contributions from diffractograms are non-trivial, especially when multiple modes of deformation may be operating. This viewpoint discusses combining a mesoscale modeling method called quasi-coarse-grained dynamics and virtual XRD to characterize the plasticity contributions in BCC metals from slip, twinning, and phase transformation behavior. The combined approach shows promise in bridging the mesoscale gap between the capabilities of atomic-scale simulations and in situ experiments to characterize the dynamic deformation of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Beyerlein IJ, Zhang X, Misra A (2014) Growth twins and deformation twins in metals. Ann Rev of Mater Res 44:329–363. https://doi.org/10.1146/annurev-matsci-070813-113304

    Article  CAS  Google Scholar 

  2. Capolungo L, Beyerlein IJ (2008) Nucleation and stability of twins in hcp metals. Phys Rev B 78:024117. https://doi.org/10.1103/PhysRevB.78.024117

    Article  CAS  Google Scholar 

  3. Mendelson S (1970) Dislocation dissociations in hcp metals. J Appl Phys 41:1893–1910. https://doi.org/10.1063/1.1659139

    Article  CAS  Google Scholar 

  4. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157. https://doi.org/10.1016/0079-6425(94)00007-7

    Article  Google Scholar 

  5. Barker LM, Hollenbach RE (1974) Shock wave study of the α ⇄ ε phase transition in iron. J Appl Phys 45:4872–4887. https://doi.org/10.1063/1.1663148

    Article  CAS  Google Scholar 

  6. Beason MT, Mandal A, Jensen BJ (2020) Direct observation of the hcp-bcc phase transition and melting along the principal Hugoniot of Mg. Phys Rev B 101:024110. https://doi.org/10.1103/PhysRevB.101.024110

    Article  CAS  Google Scholar 

  7. Jones DR, Morrow BM, Trujillo CP, GrayIII GT, Cerreta EK (2017) The α–ω phase transition in shock-loaded titanium. J Appl Phys 122:045902. https://doi.org/10.1063/1.4987146

    Article  CAS  Google Scholar 

  8. Turneaure SJ, Renganathan P, Winey JM, Gupta YM (2018) Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-Ray diffraction. Phys Rev Lett 120:265503. https://doi.org/10.1103/PhysRevLett.120.265503

    Article  CAS  Google Scholar 

  9. Williams CL, Kale C, Turnage SA et al (2020) Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved in situ synchrotron XRD experiments. Phys Rev Mater 4:83603. https://doi.org/10.1103/PhysRevMaterials.4.083603

    Article  CAS  Google Scholar 

  10. Morrow BM, Jones DR, Rigg PA, Gray GT, Cerreta EK (2018) In-situ experiments to capture the evolution of microstructure during phase transformation of titanium under dynamic loading. EPJ Web Conf 183:03020. https://doi.org/10.1051/epjconf/201818303020

    Article  CAS  Google Scholar 

  11. Wehrenberg CE, McGonegle D, Bolme C et al (2017) In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550:496–499. https://doi.org/10.1038/nature24061

    Article  CAS  Google Scholar 

  12. Albertazzi B, Ozaki N, Zhakhovsky V et al (2017) Dynamic fracture of tantalum under extreme tensile stress. Sci Adv 3:e1602705. https://doi.org/10.1126/sciadv.1602705

    Article  CAS  Google Scholar 

  13. Hwang H, Galtier E, Cynn H et al (2020) Subnanosecond phase transition dynamics in laser-shocked iron. Sci Adv. https://doi.org/10.1126/sciadv.aaz5132

    Article  Google Scholar 

  14. Kalantar DH, Belak JF, Collins GW et al (2005) Direct observation of the \(\ensuremath{\alpha}\mathrm{\text{\ensuremath{-}}}\ensuremath{\epsilon}\) transition in shock-compressed iron via nanosecond X-Ray diffraction. Phys Rev Lett 95:075502. https://doi.org/10.1103/PhysRevLett.95.075502

    Article  CAS  Google Scholar 

  15. Holder C, Schaak R (2019) Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13:7359–7365. https://doi.org/10.1021/acsnano.9b05157

    Article  CAS  Google Scholar 

  16. Wang SJ, Sui ML, Chen YT et al (2013) Microstructural fingerprints of phase transitions in shock-loaded iron. Sci Rep 3:1086. https://doi.org/10.1038/srep01086

    Article  CAS  Google Scholar 

  17. Scardi P, Leoni M, Delhez R (2004) Line broadening analysis using integral breadth methods: a critical review. J Appl Crystallogr 37:381–390. https://doi.org/10.1107/S0021889804004583

    Article  CAS  Google Scholar 

  18. Balogh L, Ribárik G, Ungár T (2006) Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. J Appl Phys. https://doi.org/10.1063/1.2216195

    Article  Google Scholar 

  19. Kunka C, Boyce BL, Foiles SM, Dingreville R (2019) Revealing inconsistencies in X-ray width methods for nanomaterials. Nanoscale 11:22456–22466. https://doi.org/10.1039/c9nr08268a

    Article  CAS  Google Scholar 

  20. Vecsei PM, Choo K, Chang J, Neupert T (2019) Neural network based classification of crystal symmetries from x-ray diffraction patterns. Phys Rev B 99:245120. https://doi.org/10.1103/PhysRevB.99.245120

    Article  CAS  Google Scholar 

  21. Wang H, Xie Y, Li D et al (2020) Rapid identification of X-ray diffraction patterns based on very limited data by interpretable convolutional neural networks. J Chem Inf Model 60:2004–2011. https://doi.org/10.1021/acs.jcim.0c00020

    Article  CAS  Google Scholar 

  22. Dong H, Butler KT, Matras D et al (2021) A deep convolutional neural network for real-time full profile analysis of big powder diffraction data. npj Comput Mater. 7:74. https://doi.org/10.1038/s41524-021-00542-4

    Article  Google Scholar 

  23. Mackenchery K, Valisetty RR, Namburu RR, Stukowski A, Rajendran AM, Dongare AM (2016) Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu. J Appl Phys 119:044301. https://doi.org/10.1063/1.4939867

    Article  CAS  Google Scholar 

  24. Germann TC, Holian BL, Lomdahl PS, Ravelo R (2000) Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys Rev Lett 84:5351–5354. https://doi.org/10.1103/PhysRevLett.84.5351

    Article  CAS  Google Scholar 

  25. Ma K, Chen J, Dongare AM (2021) Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales. J Appl Phys 129:175901. https://doi.org/10.1063/5.0040802

    Article  CAS  Google Scholar 

  26. Echeverria MJ, Galitskiy S, Mishra A, Dingreville R, Dongare AM (2021) Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales. Comput Mater Sci 198:110668. https://doi.org/10.1016/j.commatsci.2021.110668

    Article  CAS  Google Scholar 

  27. Chen J, Hahn EN, Dongare AM, Fensin SJ (2019) Understanding and predicting damage and failure at grain boundaries in BCC Ta. J Appl Phys 126:165902. https://doi.org/10.1063/1.5111837

    Article  CAS  Google Scholar 

  28. Higginbotham A, Suggit MJ, Bringa EM et al (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88:104105. https://doi.org/10.1103/PhysRevB.88.104105

    Article  CAS  Google Scholar 

  29. Gunkelmann N, Bringa EM, Tramontina DR et al (2014) Shock waves in polycrystalline iron: plasticity and phase transitions. Phys Rev B 89:140102. https://doi.org/10.1103/PhysRevB.89.140102

    Article  CAS  Google Scholar 

  30. Lu C-H, Hahn EN, Remington BA, Maddox BR, Bringa EM, Meyers MA (2015) Phase transformation in tantalum under extreme laser deformation. Sci Rep. 5:15064. https://doi.org/10.1038/srep15064

    Article  CAS  Google Scholar 

  31. Hahn EN, Fensin SJ (2019) Influence of defects on the shock Hugoniot of tantalum. J Appl Phys 125:215902. https://doi.org/10.1063/1.5096526

    Article  CAS  Google Scholar 

  32. Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Twinning in bcc metals under shock loading: a challenge to empirical potentials. Philos Mag Lett 91:731–740. https://doi.org/10.1080/09500839.2011.615348

    Article  CAS  Google Scholar 

  33. Agarwal G, Dongare AM (2019) Deformation twinning in polycrystalline mg microstructures at high strain rates at the atomic scales. Sci Rep 9:3550. https://doi.org/10.1038/s41598-019-39958-w

    Article  CAS  Google Scholar 

  34. Agarwal G, Dongare AM (2016) Shock wave propagation and spall failure in single crystal Mg at atomic scales. J Appl Phys 119:145901. https://doi.org/10.1063/1.4944942

    Article  CAS  Google Scholar 

  35. Bolesta AV, Fomin VM (2017) Molecular dynamics simulation of shock-wave loading of copper and titanium. AIP Conf Proc 1893:020008. https://doi.org/10.1063/1.5007446

    Article  CAS  Google Scholar 

  36. Zong H, Ding X, Lookman T, Sun J (2016) Twin boundary activated α → ω phase transformation in titanium under shock compression. Acta Mater 115:1–9. https://doi.org/10.1016/j.actamat.2016.05.037

    Article  CAS  Google Scholar 

  37. Milathianaki D, Boutet S, Williams G et al (2013) Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342:220–223

    Article  CAS  Google Scholar 

  38. Neogi A, Mitra N (2017) A metastable phase of shocked bulk single crystal copper: an atomistic simulation study. Sci Rep 7:7337. https://doi.org/10.1038/s41598-017-07809-1

    Article  CAS  Google Scholar 

  39. Zhao S, Flanagan R, Hahn EN et al (2018) Shock-induced amorphization in silicon carbide. Acta Mater 158:206–213. https://doi.org/10.1016/j.actamat.2018.07.047

    Article  CAS  Google Scholar 

  40. Soulard L, Durand O (2020) Observation of phase transitions in shocked tin by molecular dynamics. J Appl Phys 127:165901. https://doi.org/10.1063/5.0003089

    Article  CAS  Google Scholar 

  41. Morard G, Hernandez JA, Guarguaglini M et al (2020) In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Natl Acad Sci 117:11981–11986. https://doi.org/10.1073/pnas.1920470117

    Article  CAS  Google Scholar 

  42. Mishra A, Kunka C, Echeverria MJ, Dingreville R, Dongare AM (2021) Fingerprinting shock-induced deformations via diffraction. Sci Rep 11:9872. https://doi.org/10.1038/s41598-021-88908-y

    Article  CAS  Google Scholar 

  43. Dongare AM (2020) Challenges to model the role of heterogeneities on the shock response and spall failure of metallic materials at the mesoscales. J Mater Sci 55:3157–3166. https://doi.org/10.1007/s10853-019-04260-7

    Article  CAS  Google Scholar 

  44. Dongare AM (2014) Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales. Philos Mag 94:3877–3897. https://doi.org/10.1080/14786435.2014.961992

    Article  CAS  Google Scholar 

  45. Agarwal G, Valisetty RR, Namburu RR, Rajendran AM, Dongare AM (2017) The quasi-coarse-grained dynamics method to unravel the mesoscale evolution of defects/damage during shock loading and spall failure of polycrystalline Al microstructures. Sci Rep 7:12376. https://doi.org/10.1038/s41598-017-12340-4

    Article  CAS  Google Scholar 

  46. Agarwal G, Dongare AM (2018) Defect and damage evolution during spallation of single crystal Al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Comput Mater Sci 145:68–79. https://doi.org/10.1016/j.commatsci.2017.12.032

    Article  CAS  Google Scholar 

  47. Agarwal G, Dongare AM (2017) Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales. J Mater Sci 52:10853–10870. https://doi.org/10.1007/s10853-017-1243-y

    Article  CAS  Google Scholar 

  48. Agarwal G, Valisetty RR, Dongare AM (2020) Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales. Int J Plast. https://doi.org/10.1016/j.ijplas.2020.102678

    Article  Google Scholar 

  49. Suresh S, Lee S-W, Aindow M, Brody HD, Champagne VK, Dongare AM (2018) Unraveling the mesoscale evolution of microstructure during supersonic impact of aluminum powder particles. Sci Rep 8:10075. https://doi.org/10.1038/s41598-018-28437-3

    Article  CAS  Google Scholar 

  50. Suresh S, Lee S-W, Aindow M, Brody HD, Champagne VK, Dongare AM (2020) Mesoscale modeling of jet initiation behavior and microstructural evolution during cold spray single particle impact. Acta Mater 182:197–206. https://doi.org/10.1016/j.actamat.2019.10.039

    Article  CAS  Google Scholar 

  51. Galitskiy S, Dongare AM (2021) Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales. J Mater Sci 56:4446–4469. https://doi.org/10.1007/s10853-020-05523-4

    Article  CAS  Google Scholar 

  52. Gunkelmann N, Bringa EM, Kang K, Ackland GJ, Ruestes CJ, Urbassek HM (2012) Polycrystalline iron under compression: plasticity and phase transitions. Phys Rev B 86:144111. https://doi.org/10.1103/PhysRevB.86.144111

    Article  CAS  Google Scholar 

  53. Kong LT (2011) Phonon dispersion measured directly from molecular dynamics simulations. Comput Phys Commun 182:2201–2207. https://doi.org/10.1016/j.cpc.2011.04.019

    Article  CAS  Google Scholar 

  54. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  55. Eshelby JD, Frank FC, Nabarro FRN (1951) XLI. The equilibrium of linear arrays of dislocations. The Lond Edinb Dublin Philos Mag J Sci 42(327):351–364. https://doi.org/10.1080/14786445108561060

    Article  Google Scholar 

  56. J Hirth, J Lothe (1982) Theory of Dislocations. John Wiley \& Sons,

  57. Hirth JP, Rhee M, Zbib H (1996) Modeling of deformation by a 3D simulation of multiple, curved dislocations. J Comput Aided Mater Des 3:164–166. https://doi.org/10.1007/BF01185649

    Article  CAS  Google Scholar 

  58. Zbib HM, Rhee M, Hirth JP (1998) On plastic deformation and the dynamics of 3D dislocations. Int J Mech Sci 40:113–127. https://doi.org/10.1016/S0020-7403(97)00043-X

    Article  Google Scholar 

  59. Rhee M, Zbib HM, Hirth JP, Huang H, Rubia T (1998) Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals. Modell Simul Mater Sci Eng 6:467–492. https://doi.org/10.1088/0965-0393/6/4/012

    Article  CAS  Google Scholar 

  60. Zbib HM, Díaz de la Rubia T, Rhee M, Hirth J P (2000), 3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals, J. Nucl. Mater. 276: 154. Doi:https://doi.org/10.1016/S0022-3115(99)00175-0

  61. Coleman S, Spearot D, Capolungo L (2013) Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Modell Simul Mater Sci Eng 21:55020. https://doi.org/10.1088/0965-0393/21/5/055020

    Article  CAS  Google Scholar 

  62. Coleman S, Sichani M, Spearot D (2014) A computational algorithm to produce virtual X-ray and electron diffraction patterns from atomistic simulations. JOM 66:408–416. https://doi.org/10.1007/s11837-013-0829-3

    Article  CAS  Google Scholar 

  63. Ida T, Ando M, Toraya H (2000) Extended pseudo-Voigt function for approximating the Voigt profile. J Appl Crystallogr 33:1311–1316. https://doi.org/10.1107/S0021889800010219

    Article  CAS  Google Scholar 

  64. Newville M, Otten R, Nelson A, et al. (2014) LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python (0.8.0), Zenodo 0.8.0.

  65. Ayachit U (2015) The Paraview Guide: a parallel visualization application. Kitware, Inc.

  66. Mishra A, Lind J, Kumar M, Dongare AM (2021) Understanding the phase transformation mechanisms that affect the dynamic response of Fe-based microstructures at the atomic scales. J Appl Phys 130:215902. https://doi.org/10.1063/5.0069935

    Article  CAS  Google Scholar 

  67. Derlet PM, Van Swygenhoven H (2003) Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Phys Rev B. https://doi.org/10.1103/PhysRevB.67.014202

    Article  Google Scholar 

  68. Qian B, Lilensten L, Zhang J et al (2021) On the transformation pathways in TRIP/TWIP Ti–12Mo alloy. Mater Sci Eng, A 822:141672. https://doi.org/10.1016/j.msea.2021.141672

    Article  CAS  Google Scholar 

  69. Mishra A, Echeverria MJ, Ma K et al (2022) Virtual texture analysis to investigate the deformation mechanisms in metal microstructures at the atomic scale. J Mater Sci. https://doi.org/10.1007/s10853-022-07108-9

    Article  Google Scholar 

  70. Nguyen D, Tao L, Li Y (2022) Integration of machine learning and coarse-grained molecular simulations for polymer materials: physical understandings and molecular design. Front Chem. https://doi.org/10.3389/fchem.2021.820417

    Article  Google Scholar 

  71. Wang J, Olsson S, Wehmeyer C et al (2019) Machine learning of coarse-grained molecular dynamics force fields. ACS Cent Sci 5:755–767. https://doi.org/10.1021/acscentsci.8b00913

    Article  CAS  Google Scholar 

  72. Ye H, Xian W, Li Y (2021) machine learning of coarse-grained models for organic molecules and polymers: progress, opportunities, and challenges. ACS Omega 6:1758–1772. https://doi.org/10.1021/acsomega.0c05321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Award No. DE-NA0003857. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Nuclear Security Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash M. Dongare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Ma, K. & Dongare, A.M. Virtual diffraction simulations using the quasi-coarse-grained dynamics method to understand and interpret plasticity contributions during in situ shock experiments. J Mater Sci 57, 12782–12796 (2022). https://doi.org/10.1007/s10853-022-07365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07365-8

Navigation