Skip to main content
Log in

π-Conjugated poly(3-hexylthiophene-2,5-diyl) thin film as a SERS substrate for molecule detection application

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) has drawn attention to broad applications. Here, we investigate the SERS property of the π-conjugated poly(3-hexylthiophene-2,5-diyl) (P3HT) for molecule detection. The crystal structure of π-conjugated P3HT thin films is of the great significance to its SERS property. Our results show that the optimized crystal structure can significantly improve its SERS property. The SERS substrate has an excellent signal reproducibility (RSD < 10%). In addition, the SERS substrate still remains a good Raman enhancement after one year and shows excellent long-term stability compared with those of other types of SERS substrate. The result of our theory calculation shows that significant π-stacking of the probe molecules with the thiophene π-cores molecules plays an important role in the large SERS enhancement by the charge transfer mechanism. The increase in the crystallinity of the P3HT film can improve the charge transfer of the substrate molecules and the methylene blue (MB) molecules via more effective chemisorption of the probe molecules with the substrate molecules. The study contributed to the rational design of the organic semiconductor polymer SERS substrate with high sensitivity, selectivity, and long-term stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tadesse LF, Safir F, Ho C-S, Hasbach X, Khuri-Yakub B, Jeffrey SS, Saleh AAE, Dionne J (2020) Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J Chem Phys 152:240902. https://doi.org/10.1063/1.5142767

    Article  CAS  Google Scholar 

  2. Zhao X, Campbell S, Wallace GQ, Claing A, Bazuin CG, Masson J-F (2020) Branched Au nanoparticles on nanofibers for surface-enhanced raman scattering sensing of intracellular pH and extracellular pH gradients. ACS Sens 5:2155–2167. https://doi.org/10.1021/acssensors.0c00784

    Article  CAS  Google Scholar 

  3. Liu H, Guo Y, Wang Y, Zhang H, Ma X, Wen S, Jin J, Song W, Zhao B, Ozaki Y (2021) A nanozyme-based enhanced system for total removal of organic mercury and SERS sensing. J Hazard Mater 405:124642. https://doi.org/10.1016/j.jhazmat.2020.124642

    Article  CAS  Google Scholar 

  4. Sutani Y, Koshiba Y, Fukushima T, Ishida K (2021) Formation mechanism of ferroelectric poly (vinylidene fluoride-trifluoroethylene) copolymers with in-plane dipole alignment under low electric field from melt and its SPR based pyroelectric sensor. Polymer 228:123904. https://doi.org/10.1016/j.polymer.2021.123904

    Article  CAS  Google Scholar 

  5. Wu L, Teixeira A, Garrido-Maestu A, Muinelo-Romay L, Lima L, Lara Santos L, Prado M, Dieguez L (2020) Profiling DNA mutation patterns by SERS fingerprinting for supervised cancer classification. Biosens Bioelectron 165L112392. https://doi.org/10.1016/j.bios.2020.112392

  6. Kao Y-C, Han X, Lee YH, Lee HK, Phan-Quang GC, Lay CL, Sim HYF, Phua VJX, Ng LS, Ku CW, Tan TC, Phang IY, Tan NS, Ling XY (2020) Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min. ACS Nano 14:2541–2552. https://doi.org/10.1021/acsnano.0c00515

    Article  CAS  Google Scholar 

  7. Chen X, Lin H, Xu T, Lai K, Han X, Lin M (2020) Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong Tea by surface-enhanced Raman spectroscopy. Food Chem 315:126276. https://doi.org/10.1016/j.foodchem.2020.126276

    Article  CAS  Google Scholar 

  8. Demirci G, Muszyńska J, Cetinkaya O, Filipczak P, Zhang Y, Nowaczyk G, Halagan K, Ulanski J, Matyjaszewski K, Pietrasik J, Kozanecki M (2021) Effective SERS materials by loading Ag nanoparticles into poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects prepared by PISA. Polymer 224:123747. https://doi.org/10.1016/j.polymer.2021.123747

    Article  CAS  Google Scholar 

  9. Cheng Y, Li J, Deng SY, Sun FF (2019) AgNPs@Ag(I)-AMTD metal-organic gel-nanocomposites act as a SERS probe for the detection of Hg2+. Compos Commun 13:75–79. https://doi.org/10.1016/j.coco.2019.03.005

    Article  Google Scholar 

  10. Chen J, Wang X, Tang F, Ye X, Yang L, Zhang Y (2020) Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms. Results Phys 16:102867. https://doi.org/10.1016/j.rinp.2019.102867

    Article  Google Scholar 

  11. Wang K, Sun D-W, Pu H, Wei Q, Huang L (2019) Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl Mater Interfaces 11:29177–29186. https://doi.org/10.1021/acsami.9b09746

    Article  CAS  Google Scholar 

  12. Kamran M, Haroon M, Popoola SA, Almohammedi AR, Al-Saadi AA, Saleh TA (2019) Characterization of valeric acid using substrate of silver nanoparticles with SERS. J Mol Liq 273:536–542. https://doi.org/10.1016/j.molliq.2018.10.037

    Article  CAS  Google Scholar 

  13. Ye X, Shen J, Tao X, Ye G, Yang B (2021) Au films composed of nanoparticles fabricated on liquid surfaces for SERS. Chin Phys Lett 38:038102. https://doi.org/10.1088/0256-307X/38/3/038102

    Article  CAS  Google Scholar 

  14. Ha Pham TT, Dien ND, Vu XH (2021) Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection. RSC Adv. 11:21475–21488. https://doi.org/10.1039/D1RA02576G

  15. Yang B, Jin S, Guo S, Park Y, Chen L, Zhao B, Jung YM (2019) Recent development of SERS technology: semiconductor-based study. ACS Omega 4:20101–20108. https://doi.org/10.1021/acsomega.9b03154

    Article  CAS  Google Scholar 

  16. Li YL, Duan WY (2021) Highly significant fluorescence enhancement effect of silver-deposited Fe3O4@C core/shell nanoparticles for detection of dyes and fluorescein. Compos Commun 28:100964. https://doi.org/10.1016/j.coco.2021.100964

    Article  Google Scholar 

  17. Maslennikov DR, Sosorev AY, Fedorenko RS, Luponosov YN, Ponomarenko SA, Bruevich VV (2019) Surface-enhanced Raman spectroscopy of 2D organic semiconductor crystals. J Phys Chem C 123:27242–27250. https://doi.org/10.1021/acs.jpcc.9b08083

    Article  CAS  Google Scholar 

  18. Ganesh S, Venkatakrishnan K, Tan B (2020) Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression. Nat Commun 11:1135. https://doi.org/10.1038/s41467-020-14774-3

    Article  CAS  Google Scholar 

  19. Demirel G, Gieseking RLM, Ozdemir R, Kahmann S, Loi MA, Schatz GC, Facchetti A, Usta H (2019) Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nat Commun 10:5502. https://doi.org/10.1038/s41467-019-13505-7

    Article  CAS  Google Scholar 

  20. Yilmaz M, Babur E, Ozdemir M, Gieseking RL, Dede Y, Tamer U, Schatz GC, Facchetti A, Usta H, Demirel G (2017) Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat Mater 16:918–925. https://doi.org/10.1038/NMAT4957

    Article  CAS  Google Scholar 

  21. Razzell-Hollis J, Thiburce Q, Tsoi WC, Kim J-S (2016) Interfacial chemical composition and molecular order in organic photovoltaic blend thin films probed by surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 8:31469–31481. https://doi.org/10.1021/acsami.6b12124

    Article  CAS  Google Scholar 

  22. Kang MH, Heo DK, Kim H, Lee M, Ryu K, Kim YH, Yun C (2019) Fabrication of spray-coated semitransparent organic solar cells. IEEE J Electron Dev 7:1129–1132. https://doi.org/10.1109/JEDS.2019.2949685

    Article  CAS  Google Scholar 

  23. Chen W-H, Qiu L, Zhang P, Jiang P-C, Du P, Song L, Xiong J, Ko F (2019) Simple fabrication of a highly conductive and passivated PEDOT: PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells. J Mater Chem C 7:10247–10256. https://doi.org/10.1039/C9TC02744K

    Article  CAS  Google Scholar 

  24. Budkowski A, Zemla J, Moons E, Awsiuk K, Rysz J, Bernasik A, Bjorstrom-Svanstrom CM, Lekka M, Jaczewska J (2012) Polymer blends spin-cast into films with complementary elements for electronics and biotechnology. J Appl Polym Sci 125:4275–4284 (2012). https://doi.org/10.1002/app.36574

  25. Zhang X-Y, Yang S, Yang L, Zhang D, Sun Y, Pang Z, Yang J, Chen L (2020) Carrier dynamic monitoring of a pi-conjugated polymer: a surface-enhanced Raman scattering method. Chem Commun 56:2779–2782. https://doi.org/10.1039/C9CC09426A

    Article  CAS  Google Scholar 

  26. Iimori T, Awasthi K, Chiou C-S, Diau EW-G, Ohta N (2019) Fluorescence enhancement induced by quadratic electric-field effects on singlet exciton dynamics in poly(3-hexylthiophene) dispersed in poly (methyl methacrylate). Phys Chem Chem Phys 21:5695–5704. https://doi.org/10.1039/c8cp07801g

    Article  CAS  Google Scholar 

  27. Tsutsui Y, Okamoto H, Sakamaki D, Sugiyasu K, Takeuchi M, Seki S (2018) Landscape of charge carrier transport in doped poly (3-hexylthiophene): noncontact approach using ternary combined dielectric, paramagnetic, and optical spectroscopies. J Phys Chem Lett 9:3639–3645. https://doi.org/10.1021/acs.jpclett.8b01465

    Article  CAS  Google Scholar 

  28. Saladina M, Marques PS, Markina A, Karuthedath S, Wopke C, Gohler C, Chen Y, Allain M, Blanchard P, Cabanetos C, Andrienko D, Laquai F, Gorenflot J, Deibel C (2021) Charge Photogeneration in non-fullerene organic solar cells: influence of excess energy and electrostatic interactions. Adv Funct Mater 31:2007479. https://doi.org/10.1002/adfm.202007479

    Article  CAS  Google Scholar 

  29. Xu L, Zhang HH, Lu YY, An LJ, Shi TF (2020) The effects of solvent polarity on the crystallization behavior of thin π-conjugated polymer film in solvent mixtures investigated by grazing incident X-ray diffraction. Polymer 190:122259. https://doi.org/10.1016/j.polymer.2020.122259

    Article  CAS  Google Scholar 

  30. Han XX, Ji W, Zhao B, Ozaki Y (2017) Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale 9:4847–4861. https://doi.org/10.1039/C6NR08693D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2232019D3-10). The Marine Biomaterials Research Joint Lab of ZIAT and Dangan Town, the Zhuhai Science and Technology Department Project (ZH22036207200025PWC, ZH22017003200028PWC, ZH22017001200078PWC), Zhuhai Innovation and Entrepreneurship Team Project (ZH22055905200017PWC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Zheng Jian Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Lu, Y., Xu, L. et al. π-Conjugated poly(3-hexylthiophene-2,5-diyl) thin film as a SERS substrate for molecule detection application. J Mater Sci 57, 16965–16973 (2022). https://doi.org/10.1007/s10853-022-07313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07313-6

Navigation