Skip to main content

Advertisement

Log in

Tuning the antimicrobial efficacy of nano-Ca(OH)2 against E. coli using molarity

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work reports on tuning the antimicrobial efficacy of nano-Ca(OH)2 against E. coli by appropriately tuning the molarity of the reactants. Thus, the phase pure nano-Ca(OH)2 powders are developed by an inexpensive chemical precipitation technique using equimolar concentrations (e.g., 0.4, 0.6, 0.8, and 1 M) of [Ca(NO3)2·4H2O] and NaOH solutions. The characterizations by the XRD, FESEM, TEM, FTIR, DTA, TGA, UV–Vis spectroscopy, and agar plate well diffusion methods show that the higher the molarity of reactants, the higher the nanocrystallite size, the lower the optical band gap energy and the higher the (%) increase in inhibition zone diameters (Diz) for exposure periods in the range of 6–48 h. These results are discussed in terms of relative variations in the microstructure, lattice strain, thermal stability, optical band gap energy, defect structure, and the amount of (OH) ions. Further, the possible mechanisms of antimicrobial behavior are suggested. Finally, the implications of these results in terms of microstructurally tuned nano-Ca(OH)2 materials development for prospective futuristic applications are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Komabayashi T, Ahn C, Spears R, Zhu Q (2014) Comparison of particle morphology between commercial- and research-grade calcium hydroxide in endodontics. J Oral Sci 56:195–199. https://doi.org/10.2334/josnusd.56.195

    Article  CAS  Google Scholar 

  2. Bahman S, Sara G, Somayeh H, Parvin T, Kalhori KAM, Mona S, Reza F (2020) Combined effects of calcium hydroxide and photobiomodulation therapy on apexogenesis of immature permanent teeth in dogs. J Photochem Photobiol B 207:111867. https://doi.org/10.1016/j.jphotobiol.2020.111867

    Article  CAS  Google Scholar 

  3. Elchaghaby MA, Moheb DM, El Shahawy OI, Abd Alsamad AM, Rashed MAM (2020) Clinical and radiographic evaluation of indirect pulp treatment of young permanent molars using photo-activated oral disinfection versus calcium hydroxide: a randomized controlled pilot trial. BDJ Open 6:4–4. https://doi.org/10.1038/s41405-020-0030-z

    Article  Google Scholar 

  4. Thawre S, Joshi R, Bhardwaj SB, Bhushan J (2020) Comparison of the antibacterial efficacy of tea, tree oil, nisin and calcium hydroxide against Enterococcus faecalis. Mater Today Proc 28:1477–1480. https://doi.org/10.1016/j.matpr.2020.04.824

    Article  CAS  Google Scholar 

  5. Afkhami F, Rostami G, Batebi S, Bahador A (2021) Residual antibacterial effects of a mixture of silver nanoparticles/calcium hydroxide and other root canal medicaments against Enterococcus faecalis. J Dent Sci. https://doi.org/10.1016/j.jds.2021.11.013

    Article  Google Scholar 

  6. Yamanaka S, Hirano S, Uwai K, Tokuraku K (2020) Design of calcium hydroxide–based granules for livestock sanitation. Case Stud Chem Environ Eng 2:100005. https://doi.org/10.1016/j.cscee.2020.100005

    Article  Google Scholar 

  7. Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Dei L (2014) Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implic Archaeol Paleont Langmuir 30:660–668. https://doi.org/10.1021/la404085v

    Article  CAS  Google Scholar 

  8. Lee H-G, Cho CH, Kim HK, Yoo S (2020) Improved physical and mechanical properties of food packaging films containing calcium hydroxide as a CO2 adsorbent by stearic acid addition. Food Packag Shelf Life 26:100558. https://doi.org/10.1016/j.fpsl.2020.100558

    Article  Google Scholar 

  9. Gollsch M, Afflerbach S, Angadi BV, Linder M (2020) Investigation of calcium hydroxide powder for thermochemical storage modified with nanostructured flow agents. Sol Energy 201:810–818. https://doi.org/10.1016/j.solener.2020.03.033

    Article  CAS  Google Scholar 

  10. Funayama S, Takasu H, Kim ST, Kato Y (2020) Thermochemical storage performance of a packed bed of calcium hydroxide composite with a silicon-based ceramic honeycomb support. Energy 201:117673. https://doi.org/10.1016/j.energy.2020.117673

    Article  CAS  Google Scholar 

  11. Lei J, Law WW, Yang E-H (2021) Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide. Constr Build Mater 272:121868. https://doi.org/10.1016/j.conbuildmat.2020.121868

    Article  CAS  Google Scholar 

  12. Liang Y (2020) Mechanical and fracture properties of calcium silicate hydrate and calcium hydroxide composite from reactive molecular dynamics simulations. Chem Phys Lett 761:138117. https://doi.org/10.1016/j.cplett.2020.138117

    Article  CAS  Google Scholar 

  13. Swain SK, Bhattacharyya S, Sarkar D (2015) Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state. Mater Res Bull 64:257–261. https://doi.org/10.1016/j.materresbull.2014.12.072

    Article  CAS  Google Scholar 

  14. Granizo ML, Alonso S, Blanco-Varela MT, Palomo A (2002) Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J Am Ceram Soc 85:225–231. https://doi.org/10.1111/j.1151-2916.2002.tb00070.x

    Article  CAS  Google Scholar 

  15. Rodriguez-Navarro C, Suzuki A, Ruiz-Agudo E (2013) Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir 29:11457–11470. https://doi.org/10.1021/la4017728

    Article  CAS  Google Scholar 

  16. López-Arce P, Gomez-Villalba LS, Pinho L, Fernández-Valle ME, de Buergo MÁ, Fort R (2010) Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Mater Charact 61:168–184. https://doi.org/10.1016/j.matchar.2009.11.007

    Article  CAS  Google Scholar 

  17. Dei L, Salvadori B (2006) Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit 7:110–115. https://doi.org/10.1016/j.culher.2006.02.001

    Article  Google Scholar 

  18. Ogata F, Kagiyama Y, Saenjum C, Nakamura T, Kawasaki N (2020) Performance of poly-γ-glutamic acid–calcium hydroxide treatment for phosphate removal and applicability of the resulting flocculant as a phosphate-based fertilizer. Bioresour Technol Rep 11:100464. https://doi.org/10.1016/j.biteb.2020.100464

    Article  Google Scholar 

  19. Antony D, Yadav R, Kalimuthu R, Kumuthan MS (2022) Phyto-complexation of galactomannan-stabilized calcium hydroxide and selenium-calcium hydroxide nanocomposite to enhance the seed-priming effect in Vigna radiata. Int J Biol Macromol 194:933–944. https://doi.org/10.1016/j.ijbiomac.2021.11.148

    Article  CAS  Google Scholar 

  20. Samanta A, Podder S, Ghosh CK, Bhattacharya M, Ghosh J, Mallik AK, Dey A, Mukhopadhyay AK (2017) ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide. J Mech Behav Biomed Mater 72:110–128. https://doi.org/10.1016/j.jmbbm.2017.04.004

    Article  CAS  Google Scholar 

  21. Khachani M, El Hamidi A, Halim M, Arsalane S (2014) Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2. J Mater Environ Sci 5:615–624. https://doi.org/10.1016/j.jmbbm.2017.04.004

    Article  CAS  Google Scholar 

  22. Schaube F, Koch L, Wörner A, Müller-Steinhagen H (2012) A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. Thermochim Acta 538:9–20. https://doi.org/10.1016/j.tca.2012.03.003

    Article  CAS  Google Scholar 

  23. Dutta S, Shirai T (1974) Kinetics of drying and decomposition of calcium hydroxide. Chem Eng Sci 29:2000–2003. https://doi.org/10.1016/0009-2509(74)85021-9

    Article  CAS  Google Scholar 

  24. Beaudoin JJ, Sato T, Tumidajski PJ (2006) The Thermal decomposition of Ca(OH)2 polymorphs. In: 2nd International Symposium on Advances in Concrete Through Science and Engineering, RILEM, Québec City, Canada. pp 1–11. https://nrc-publications.canada.ca/eng/view/accepted/?id=bedec8af-029a-4fe9-96e3-55790cfbb648

  25. Bayliss P (1964) Effect of particle size on differential thermal analysis. Nature 201:1019–1019. https://doi.org/10.1038/2011019a0

    Article  CAS  Google Scholar 

  26. Van Der Marel HW (1956) Quantitative differential thermal analyses of clay and other minerals. Am Mineral 41:222–244

    Google Scholar 

  27. Pishtshev A, Karazhanov S, Klopov M (2014) Materials properties of magnesium and calcium hydroxides from first-principles calculations. Comput Mater Sci 95:693–705. https://doi.org/10.1016/j.commatsci.2014.07.007

    Article  CAS  Google Scholar 

  28. Wang R, Lang J, Liu Y, Lin Z, Yan X (2015) Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Mater 7:e183–e183. https://doi.org/10.1038/am.2015.42

    Article  CAS  Google Scholar 

  29. M Singh, A Singhal (2018) Modeling of shape and size effects for the band gap of semiconductor nanoparticles. In: 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), IEEE. 339–342. https://doi.org/10.1109/ICMETE.2018.00080

  30. Qi WH, Wang MP, Liu QH (2005) Shape factor of nonspherical nanoparticles. J Mater Sci 40:2737–2739. https://doi.org/10.1007/s10853-005-2119-0

    Article  CAS  Google Scholar 

  31. Samanta P (2020) Band gap engineering, quantum confinement, defect mediated broadband visible photoluminescence and associated quantum states of size tuned zinc oxide nanostructures. Optik 221:165337. https://doi.org/10.1016/j.ijleo.2020.165337

    Article  CAS  Google Scholar 

  32. Paul TC, Babu MH, Podder J, Dev BC, Sen SK, Islam S (2021) Influence of Fe3+ ions doping on TiO2 thin films: defect generation, d-d transition and band gap tuning for optoelectronic device applications. Phys B Condens Matter 604:412618. https://doi.org/10.1016/j.physb.2020.412618

    Article  CAS  Google Scholar 

  33. Das A, Mandal AC, Roy S, Nambissan PMG (2018) Internal defect structure of calcium doped magnesium oxide nanoparticles studied by positron annihilation spectroscopy. AIP Adv 8:095013. https://doi.org/10.1063/1.5001105

    Article  CAS  Google Scholar 

  34. Liu X, Sui B, Camargo PHC, Wang J, Sun J (2021) Tuning band gap of MnO2 nanoflowers by Alkali metal doping for enhanced Ferroptosis/phototherapy synergism in Cancer. Appl Mater Today 23:101027. https://doi.org/10.1016/j.apmt.2021.101027

    Article  Google Scholar 

  35. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22:24610–24617. https://doi.org/10.1039/C2JM35087D

    Article  CAS  Google Scholar 

  36. Vatsha B, Tetyana P, Shumbula PM, Ngila JC, Sikhwivhilu LM, Moutloali RM (2013) Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles. J Biomater Nanobiotechnol 4:365–373. https://doi.org/10.4236/jbnb.2013.44046

    Article  CAS  Google Scholar 

  37. Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5:1137–1142. https://doi.org/10.1021/am302910q

    Article  CAS  Google Scholar 

  38. Siqueira JF, Lopes HP (1999) Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J 32:361–369. https://doi.org/10.1046/j.1365-2591.1999.00275.x

    Article  Google Scholar 

  39. da Silva BL, Abuçafy MP, Manaia EB, Oshiro Junior JA, Chiari-Andréo BG, Pietro RCR, Chiavacci LA (2019) Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int J Nanomed 14:9395–9410. https://doi.org/10.2147/IJN.S216204

    Article  Google Scholar 

  40. Ponnuvelu DV, Selvaraj A, Suriyaraj SP, Selvakumar R, Pulithadathail B (2016) Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity. Mater Res Express 3:105005. https://doi.org/10.1088/2053-1591/3/10/105005

    Article  CAS  Google Scholar 

  41. Zhang L, Yin L, Wang C, Lun N, Qi Y (2010) Sol−gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. ACS Appl Mater Interfaces 2:1769–1773. https://doi.org/10.1021/am100274d

    Article  CAS  Google Scholar 

  42. Delgado RJR, Gasparoto TH, Sipert CR, Pinheiro CR, de Moraes IG, Garcia RB, Duarte MAH, Bramante CM, Torres SA, Garlet GP, Campanelli AP, Bernardineli N (2013) Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans. Int J Oral Sci 5:32–36. https://doi.org/10.1038/ijos.2013.12

    Article  CAS  Google Scholar 

  43. Ballal V, Kundabala M, Acharya S, Ballal M (2007) Antimicrobial action of calcium hydroxide, chlorhexidine and their combination on endodontic pathogens. Aust Dent J 52:118–121. https://doi.org/10.1111/j.1834-7819.2007.tb00475.x

    Article  CAS  Google Scholar 

  44. Mohammadi Z, Shalavi S, Yazdizadeh M (2012) Antimicrobial activity of calcium hydroxide in endodontics: a review. Chonnam Med J 48:133–140. https://doi.org/10.4068/cmj.2012.48.3.133

    Article  CAS  Google Scholar 

  45. Ba-Hattab R, Al-Jamie M, Aldreib H, Alessa L, Alonazi M (2016) Calcium hydroxide in endodontics: an overview. Open J Stomatol 6:274–289. https://doi.org/10.4236/ojst.2016.612033

    Article  CAS  Google Scholar 

  46. Athanassiadis B, Walsh LJ (2017) Aspects of solvent chemistry for calcium hydroxide medicaments. Materials 10:1219. https://doi.org/10.3390/ma10101219

    Article  CAS  Google Scholar 

  47. Kim M-A, Rosa V, Neelakantan P, Hwang Y-C, Min K-S (2021) Characterization, antimicrobial effects, and cytocompatibility of a root canal sealer produced by pozzolan reaction between calcium hydroxide and silica. Materials 14:2863. https://doi.org/10.3390/ma14112863

    Article  CAS  Google Scholar 

  48. Nishanthi VRR (2021) Role of calcium hydroxide in dentistry: a review. Int J Pharm Res 12:2822–2827. https://doi.org/10.31838/ijpr/2020.12.02.377

    Article  Google Scholar 

  49. Halbus AF, Horozov TS, Paunov VN (2019) Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticles. Biomimetics 4:41. https://doi.org/10.3390/biomimetics4020041

    Article  CAS  Google Scholar 

  50. (2020) Relationship between pH values and molarity of acids and alkalis. https://www.aplustopper.com/relationship-ph-values-molarity-acids-alkalis/#:~:text=Conclusion%3A,will%20increase%20its%20pH%20value

  51. Saliani M, Jalal R, Goharshadi EK (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J Microbiol 8:e17115. https://doi.org/10.5812/jjm.17115

    Article  Google Scholar 

  52. ElReash AA, Hamama H, Eldars W, Lingwei G, Zaen El-Din AM, Xiaoli X (2019) Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health 19:235. https://doi.org/10.1186/s12903-019-0933-z

    Article  CAS  Google Scholar 

  53. Fernández RO, Antón DN (1987) Bacteriostatic action of streptomycin on ribosomally resistant mutants (rpsL) of Salmonella typhimurium. Antimicrob Agents Chemother 31:1627–1631

    Article  Google Scholar 

  54. Sánchez-Clemente R, Igeño MI, Población AG, Guijo MI, Merchán F, Blasco R (2018) Study of pH changes in media during bacterial growth of several environmental strains. Proceedings 2:1297. https://doi.org/10.3390/proceedings2201297

    Article  Google Scholar 

  55. Boudreau MA, Fisher JF, Mobashery S (2012) Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 51:2974–2990. https://doi.org/10.1021/bi300174x

    Article  CAS  Google Scholar 

  56. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173. https://doi.org/10.1021/nn300934k

    Article  CAS  Google Scholar 

  57. Prasanna VL, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31:9155–9162. https://doi.org/10.1021/acs.langmuir.5b02266

    Article  CAS  Google Scholar 

  58. Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR (2013) Antimicrobial strategies centered around reactive oxygen species–bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37:955–989. https://doi.org/10.1111/1574-6976.12026

    Article  CAS  Google Scholar 

  59. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford

    Book  Google Scholar 

  60. Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJD, Hoyos-Nogués M, Gil FJ, Perez RA (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater 6:4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  Google Scholar 

  61. Wang E, Huang Y, Du Q, Sun Y (2017) Silver nanoparticle induced toxicity to human sperm by increasing ROS(reactive oxygen species) production and DNA damage. Environ Toxicol Pharmacol 52:193–199. https://doi.org/10.1016/j.etap.2017.04.010

    Article  CAS  Google Scholar 

  62. de Lucca Camargo L, Touyz RM (2019) Reactive oxygen species. In: Touyz RM, Delles C (eds) Textbook of vascular medicine. Springer International Publishing, Cham, pp 127–136

    Chapter  Google Scholar 

  63. Kwak MS, Rhee WJ, Lee YJ, Kim HS, Kim YH, Kwon MK, Shin J-S (2021) Reactive oxygen species induce Cys106-mediated anti-parallel HMGB1 dimerization that protects against DNA damage. Redox Biol 40:101858. https://doi.org/10.1016/j.redox.2021.101858

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported through Enhanced Seed Grant Endowment Fund Project No EF/2019–20//QE04-06 provided to the author PK and the Enhanced Seed Grant Endowment Fund Project No. EF/2019–20/QEO4-01 dated 30.04.2019 provided to the author MD by the Directorate of Research at the Manipal University Jaipur (MUJ). It was also financially supported by the Industry Sponsored Project of RI Instruments & Innovation India Ref: RIIII/PROPJ/MUJ/2020 tenable at the Department of Physics, School of Basic Sciences, Faculty of Science, Manipal University Jaipur. It was also supported by the financial support from DST-SERB Imprint Project with sanction no. IMP/2019/000004 dated 16th December 2019 sanctioned to the author MD. The authors acknowledge the infrastructural supports received from the Central Analytical Facility (CAF) at MUJ for the UV–Vis, FTIR, and DTA-TGA measurements, MRC, MNIT Jaipur for the FESEM and HRTEM measurements and DIAT, Pune, for the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pushpendra Kumar or Anoop Kumar Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1.

Absorbance spectra of the samples S1, S2, S3, and S4. Figure S2. Tauc’s plots for the samples S1, S2, S3, and S4. Figure S3. (a) Inhibition zone diameter (Diz) as a function of concentration for the samples (a) S1, (b) S2, (c) S3, and (d) S4; insets: corresponding antimicrobial activities of the samples S1, S2, S3, and S4 in turn. Figure S4. Optical photomicrographs of antibacterial activity for different molarities. Figure S5. (a) Inhibition zone diameter (Diz) as a function of molarity for different molarities, (b) decrease in inhibition zone diameter with respect to molarity changes. Figure S6. (a) XRD pattern, (b) W-H plot, (c) FESEM photomicrograph of synthesized 3 M Ca(OH)2 sample. Supplementary file1 (DOCX 3854 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harish, Kumar, P., Kumari, S. et al. Tuning the antimicrobial efficacy of nano-Ca(OH)2 against E. coli using molarity. J Mater Sci 57, 8241–8261 (2022). https://doi.org/10.1007/s10853-022-07198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07198-5

Navigation