Skip to main content

Reactive Oxygen Species

  • Chapter
  • First Online:
Textbook of Vascular Medicine

Abstract

Reactive oxygen species (ROS) are small unstable, highly reactive molecules with a short half-life derived by reduction of molecular oxygen. Once generated, ROS influence signalling molecules, in part through post-translational oxidative modification of proteins, modulating cellular function. These species are produced in all vascular cell types and have emerged as key second messengers in cellular events in the vasculature. ROS are involved in vascular contraction and relaxation, cell growth, migration, differentiation, survival and apoptosis. In pathological conditions, increased ROS generation is associated with oxidative stress and inflammation leading to dysregulation of vascular cell function and consequent vascular injury underlying cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 2015;116:531–49.

    Article  CAS  Google Scholar 

  2. Montezano AC, Tsiropoulou S, Dulak-Lis M, Harvey A, Camargo Lde L, Touyz RM. Redox signaling, nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens. 2015;24:425–33.

    Article  CAS  Google Scholar 

  3. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15:1583–606.

    Article  CAS  Google Scholar 

  4. Winterbourn CC. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013;528:3–25.

    Article  CAS  Google Scholar 

  5. Thomas C, Mackey MM, Diaz AA, Cox DP. Hydroxyl radical is produced via the fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep: Commun Free Radic Res. 2009;14:102–8.

    Article  CAS  Google Scholar 

  6. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15:1957–97.

    Article  CAS  Google Scholar 

  7. Oelze M, Kroller-Schon S, Steven S, Lubos E, Doppler C, Hausding M, Tobias S, Brochhausen C, Li H, Torzewski M, Wenzel P, Bachschmid M, Lackner KJ, Schulz E, Munzel T, Daiber A. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension. 2014;63:390–6.

    Article  CAS  Google Scholar 

  8. Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. 2015;40:435–45.

    Article  CAS  Google Scholar 

  9. Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of peroxiredoxins: gain or loss of function? Antioxid Redox Signal. 2018;28:574–90.

    Article  CAS  Google Scholar 

  10. Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C, Bae YS, Lee BI, Rhee SG, Kang SW. Regulation of pdgf signalling and vascular remodelling by peroxiredoxin ii. Nature. 2005;435:347–53.

    Article  CAS  Google Scholar 

  11. Whayne TF Jr, Parinandi N, Maulik N. Thioredoxins in cardiovascular disease. Can J Physiol Pharmacol. 2015;93:903–11.

    Article  CAS  Google Scholar 

  12. Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.

    Article  CAS  Google Scholar 

  13. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413.

    Article  CAS  Google Scholar 

  14. Montezano AC, Touyz RM. Reactive oxygen species, vascular noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20:164–82.

    Article  CAS  Google Scholar 

  15. Bedard K, Krause KH. The nox family of ros-generating nadph oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  Google Scholar 

  16. Angelova PR, Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med. 2016;100:81–5.

    Article  CAS  Google Scholar 

  17. Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol. 2007;292:H2023–31.

    Article  CAS  Google Scholar 

  18. Caja S, Enriquez JA. Mitochondria in endothelial cells: sensors and integrators of environmental cues. Redox Biol. 2017;12:821–7.

    Article  CAS  Google Scholar 

  19. Babior BM, Lambeth JD, Nauseef W. The neutrophil nadph oxidase. Arch Biochem Biophys. 2002;397:342–4.

    Article  CAS  Google Scholar 

  20. Violi F, Sanguigni V, Carnevale R, Plebani A, Rossi P, Finocchi A, Pignata C, De Mattia D, Martire B, Pietrogrande MC, Martino S, Gambineri E, Soresina AR, Pignatelli P, Martino F, Basili S, Loffredo L. Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation. 2009;120:1616–22.

    Article  CAS  Google Scholar 

  21. Li Y, Pagano PJ. Microvascular nadph oxidase in health and disease. Free Radic Biol Med. 2017;109:33–47.

    Article  CAS  Google Scholar 

  22. Gimenez M, Schickling BM, Lopes LR, Miller FJ Jr. Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin Sci. 2016;130:151–65.

    Article  CAS  Google Scholar 

  23. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassegue B, Griendling KK. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol. 2007;27:42–8.

    Article  CAS  Google Scholar 

  24. Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM, Brandes RP. Nox4 is a protective reactive oxygen species generating vascular nadph oxidase. Circ Res. 2012;110:1217–25.

    Article  Google Scholar 

  25. Camargo LL, Harvey AP, Rios FJ, Tsiropoulou S, Da Silva RNO, Cao Z, Graham D, McMaster C, Burchmore RJ, Hartley RC, Bulleid N, Montezano AC, Touyz RM. Vascular nox (nadph oxidase) compartmentalization, protein hyperoxidation, and endoplasmic reticulum stress response in hypertension. Hypertension. 2018;72:235–46.

    Article  CAS  Google Scholar 

  26. Montezano AC, De Lucca Camargo L, Persson P, Rios FJ, Harvey AP, Anagnostopoulou A, Palacios R, Gandara ACP, Alves-Lopes R, Neves KB, Dulak-Lis M, Holterman CE, de Oliveira PL, Graham D, Kennedy C, Touyz RM. Nadph oxidase 5 is a pro-contractile nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function. J Am Heart Assoc. 2018;7:e009388.

    Article  Google Scholar 

  27. Poole LB, Nelson KJ. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol. 2008;12:18–24.

    Article  CAS  Google Scholar 

  28. Tabet F, Schiffrin EL, Callera GE, He Y, Yao G, Ostman A, Kappert K, Tonks NK, Touyz RM. Redox-sensitive signaling by angiotensin ii involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase shp-2 in vascular smooth muscle cells from shr. Circ Res. 2008;103:149–58.

    Article  CAS  Google Scholar 

  29. Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323–32.

    Article  CAS  Google Scholar 

  30. Panieri E, Santoro MM. Ros signaling and redox biology in endothelial cells. Cell Mol Life Sci: CMLS. 2015;72:3281–303.

    Article  CAS  Google Scholar 

  31. Velichkova M, Hasson T. Keap1 regulates the oxidation-sensitive shuttling of nrf2 into and out of the nucleus via a crm1-dependent nuclear export mechanism. Mol Cell Biol. 2005;25:4501–13.

    Article  CAS  Google Scholar 

  32. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998;273:25804–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhian M. Touyz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Lucca Camargo, L., Touyz, R.M. (2019). Reactive Oxygen Species. In: Touyz, R., Delles, C. (eds) Textbook of Vascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-16481-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16481-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16480-5

  • Online ISBN: 978-3-030-16481-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics