Skip to main content
Log in

Facile fabrication of FeTe/reduced graphene oxide nanocomposites for sodium (potassium) storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

FeTe/reduced graphene oxide (RGO) nanocomposites have been synthesized using hydrothermal method followed by anneal process. The structure and morphology of FeTe/RGO nanocomposites were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, and X-ray photoelectron spectroscopy. For Na-ion batteries anode, the FeTe/RGO electrode exhibits stable cyclability with a reversible capacity of 360 mAh g−1 after 100 cycles at 100 mA g−1 and good rate capability. For K-ion batteries anode, the FeTe/RGO electrode also exhibits a reversible capacity of 320 mAh g−1 after 100 cycles at 100 mA g−1 and good rate capability. The good electrochemical performance of the FeTe/RGO electrode is ascribed to its unique structure, which can accommodate volume variation of FeTe and enhance the electronic conductivity. The synthesis approach in this work is facile, cost-effective, which can be potentially used to fabricate other metal tellurides/RGO composites as well. Considering the excellent electrochemical properties of FeTe/RGO, it is suggested that the FeTe/RGO is favorable for the potential applications in electrochemical device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shen J, Xu X, Liu J, Liu Z, Li F, Hu R et al (2019) Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium–sulfur batteries. ACS Nano 13:8986–8996

    Article  CAS  Google Scholar 

  2. He Y, Zhang Y, Wang Z, Li X, Lü Z, Huang X et al. In situ surface film formed by solid-state aAnodic oxidation for stable lithium metal anodes. Adv Funct Mater 31:2101737

  3. Wang Z, Shen J, Liu J, Xu X, Liu Z, Hu R et al (2019) Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv Mater 31:1902228

    Article  Google Scholar 

  4. Yuan J, Liu W, Zhang X, Zhang Y, Yang W, Lai W et al (2020) MOF derived ZnSe-FeSe2/RGO nanocomposites with enhanced sodium/potassium storage. J Power Sources 455:227937

  5. Liu W, Yuan J, Hao Y, Maleki Kheimeh Sari H, Wang J, Kakimov A et al (2020) Heterogeneous structured MoSe2-MoO3 quantum dots with enhanced sodium/potassium storage. J Mater Chem A 8:23395

    Article  CAS  Google Scholar 

  6. Wang C, Liu L, Zhao S, Liu Y, Yang Y, Yu H et al (2021) Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun 12:2256

    Article  CAS  Google Scholar 

  7. Shan H, Qin J, Ding Y, Sari HMK, Song X, Liu W et al (2021) Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv Mater 33:2102471

    Article  CAS  Google Scholar 

  8. Xu X, Zhang D, Wang Z, Zuo S, Yuan J, Hu R et al (2021) Ultrafine ZnS nanoparticles in the nitrogen-doped carbon matrix for long-life and high-stable potassium-ion batteries. ACS Appl Mater Inter 13:11007–11017

    Article  CAS  Google Scholar 

  9. Zhu H, Liu T, Peng L, Yao W, Kang F, Shu J et al (2021) A compact Bi2WO6 microflowers anode for potassium-ion storage: taming a sequential phase evolution toward stable electrochemical cycling. Nano Energy 82:105784

  10. Kumar R, Joanni E, Singh RK, Singh DP, Moshkalev SA (2018) Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog Energ Combust 67:115

    Article  Google Scholar 

  11. Kumar R, Sahoo S, Joanni E, Singh RK, Matsuda A (2020) Heteroatom doped graphene engineering for energy storage and conversion. Mater Today 39:47

    Article  CAS  Google Scholar 

  12. Kumar R, Singh RK, Singh DP, Joanni E, Moshkalev SA (2017) Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications. Coordin Chem Rev 342:34

    Article  CAS  Google Scholar 

  13. Kumar R, Sahoo S, Joanni E, Singh RK, Matsuda A (2019) Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog Energ Combust 75:100786

  14. Tan WK, Asami K, Maegawa K, Kumar R, Matsuda A (2020) Fe3O4-embedded rGO composites as anode for rechargeable FeOx-air batteries (2020) Mater Today Commun 25:101540

  15. Devi N, Sahoo S, Kumar R, Singh RK (2021) A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale 13: 111679

  16. Kumar R, Singh RK, Alaferdov AV, Moshkalev SA (2018) Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim Acta 281:78

    Article  CAS  Google Scholar 

  17. Chen F, Wang S, He XD, Liao JY, Hu Q, Dong JM, Chen CH (2020) Hollow sphere structured V2O3@C as an anode material for high capacity potassium-ion batteries. J Mater Chem A 8:13261

    Article  CAS  Google Scholar 

  18. Yuan JJ, Hao YC, Zhang XK, Li XF (2018) Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage (2018). Collid Surface A 555:795

    Article  CAS  Google Scholar 

  19. Hong ZS, Zhou KQ, Zhang JW, Huang ZG, Wei MD (2016) Cryst Growth Des 16:6605

    Article  CAS  Google Scholar 

  20. Sun D, Liu S, Zhang G, Zhou J (2019) NiTe2/N-doped graphitic carbon nanosheets derived from Ni-hexamine coordination frameworks for Na-ion storage. Chem Eng J 359:1659

    Article  CAS  Google Scholar 

  21. Xu X, Zhang Y, Sun H, Zhou J, Liu Z, Qiu Z et al (2021) Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv Mater 33:2100272

    Article  CAS  Google Scholar 

  22. Wu H, Lu S, Xu S, Zhao J, Wang Y, Huang C et al (2021) Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 15:2506–2519

    Article  CAS  Google Scholar 

  23. Li X, Han Z, Yang W, Li Q, Li H, Xu J et al (2021) 3D ordered porous hybrid of ZnSe/N-doped carbon with anomalously high Na+ mobility and ultrathin solid electrolyte interphase for sodium-ion batteries. Adv Funct Mater 31:2106194

    Article  CAS  Google Scholar 

  24. Xing L, Han K, Liu Q, Liu Z, Chu J, Zhang L et al (2021) Hierarchical two-atom-layered WSe2/C ultrathin crumpled nanosheets assemblies: engineering the interlayer spacing boosts potassium-ion storage. Energy Storage Mater 36:309

    Article  Google Scholar 

  25. Cho JS, Lee SY, Lee J-K, Kang YC (2016) Iron telluride-decorated reduced graphene oxide hybrid microspheres as anode materials with improved Na-ion storage properties. ACS Appl Mater Inter 8:21343

    Article  CAS  Google Scholar 

  26. Park GD, Kang YC (2020) Conversion reaction mechanism for yolk-shell-structured iron telluride-C nanospheres and exploration of their electrochemical performance as an anode material for potassium-ion batteries. Small Methods 4:2000556

    Article  CAS  Google Scholar 

  27. Ding Y, Wang W, Bi M, Guo J, Fang Z (2019) CoTe nanorods/rGO composites as a potential anode material for sodium-ion storage. Electrochim Acta 313:331–340

    Article  CAS  Google Scholar 

  28. Zhang W, Wang X, Wong KW, Zhang W, Chen T, Zhao W et al (2021) Rational design of embedded CoTe2 nanoparticles in freestanding N-doped multichannel carbon for sodium-ion batteries with ultralong cycle Lifespan. ACS Appl Mater Inter 13:34134–34144

    Article  CAS  Google Scholar 

  29. Yang SJ, Park GD, Kang YC, (2020) Conversion reaction mechanism of cobalt telluride-carbon composite microspheres synthesized by spray pyrolysis process for K-ion storage. Appl Surf Sci 529: 147140

  30. Yu XX, Wang L, Yin H (2019) Hierarchical heterojunction structures based-on layered Sb2Te3 nanoplate@rGO for extended long-term life and high-rate capability of sodium batteries. Appl Mater Today 15:582

    Article  Google Scholar 

  31. Zhang W, Zhang Q, Shi Q, Xin S, Wu J, Zhang CL et al (2019) Facile synthesis of carbon-coated porous Sb2Te3 nanoplates with high alkali metal ion storage. ACS Appl Mater Inter 11:29934

    Article  CAS  Google Scholar 

  32. Wang XG, Bian C, He YX, Guo J, Zhang P, Liu LX, Wei Y, Meng LJ, Jiang HN, Li BX, Nie AM, Bao LH, Gong YJ (2021) Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. Mater Today 45:35

    Article  CAS  Google Scholar 

  33. Liu F, Cheng X, Xu R, Wu Y, Jiang Y, Yu Y (2018) Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv Funct Mater 28:1800394

    Article  Google Scholar 

  34. Xu L, Guo W, Zeng L, Xia X, Wang Y, Xiong P, et al (2021) V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem Eng J 419:129607

Download references

Acknowledgements

This work is supported by Foundation of Education Department of Jiangxi (GJJ161572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, X., Hou, R. et al. Facile fabrication of FeTe/reduced graphene oxide nanocomposites for sodium (potassium) storage. J Mater Sci 57, 5167–5176 (2022). https://doi.org/10.1007/s10853-022-06979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06979-2

Navigation