Skip to main content
Log in

Work-function effect of Ti3C2/Fe-N-C inducing solid electrolyte interphase evolution for ultra-stable sodium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the quest to enhance the efficiency of sodium-ion batteries, the dynamics of solid electrolyte interphase (SEI) formation are of paramount importance. The SEI layer’s integrity is integral to the charge–discharge efficiency and the overall longevity of the battery. Herein, a novel two-dimensional Ti3C2 fragments enmeshed on iron-nitrogen-carbon (Fe-N-C) nanosheets (Ti3C2/Fe-N-C) has been synthesized. This electrode features a matrix which has been shown to expedite SEI layer formation through the facilitation of selective anion adsorption, thus augmenting battery performance. Density functional theory calculation reveals that the SEI evolution energy of NaPF6 at the Ti3C2/Fe-N-C interface is 0.81 eV, significantly lower than the Ti3C2 (1.23 eV). This process is driven by the electron transportation from Ti3C2 to Fe-N-C substrate, facilitated by their work-function difference, leading to the formation of ferromagnetic Fe species, which possesses Fe 3d \(\mathrm{d}_{xz}\mathrm{d}_{yz}\mathrm{d}_{z^{2}}\) orbitals and undergoes hybridization with the π and σ orbitals of NaF, creating a key intermediate during charging. This process diminishes the antibonding energy and attenuates the orbital interaction with NaF, thus reducing the activation energy and improving the SEI formation reaction kinetics. Consequently, it leads to the creation of multi-interface SEI characterized by high-throughput ion transport and an efficient reaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  PubMed  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  PubMed  Google Scholar 

  3. Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

    Article  CAS  Google Scholar 

  4. Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y.; Zhang, J. W.; Chen, Q. G.; Xia, X. H.; Chen, M. H. Emerging of heterostructure materials in energy storage: A review. Adv. Mater. 2021, 33, 2100855.

    Article  CAS  Google Scholar 

  6. Huang, Z. J.; Lai, J. C.; Liao, S. L.; Yu, Z. A.; Chen, Y. L.; Yu, W. L.; Gong, H. X.; Gao, X.; Yang, Y. F.; Qin, J. et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes. Nat. Energy 2023, 8, 577–585.

    Article  CAS  Google Scholar 

  7. Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384–389.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Article  CAS  PubMed  Google Scholar 

  9. Deng, T.; Ji, X.; Zou, L. F.; Chiekezi, O.; Cao, L. S.; Fan, X. L.; Adebisi, T. R.; Chang, H. J.; Wang, H.; Li, B. et al. Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nat. Nanotechnol. 2022, 17, 269–277.

    Article  CAS  PubMed  Google Scholar 

  10. Li, Y.; Liu, M. Q.; Feng, X.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. How can the electrode influence the formation of the solid electrolyte interface. ACS Energy Lett. 2021, 6, 3307–3320.

    Article  CAS  Google Scholar 

  11. Wang, H. P.; Zhu, C. L.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Huang, J. D.; Wu, D. X.; Ma, J. M. Formation of NaF-rich solid electrolyte interphase on Na Anode through additive-induced anion-enriched structure of Na+ solvation. Angew. Chem., Int. Ed. 2022, 61, e202208506.

    Article  CAS  Google Scholar 

  12. Gu, T.; Chen, L. K.; Huang, Y. F.; Ma, J. B.; Shi, P. R.; Biao, J.; Liu, M.; Lv, W.; He, Y. B. Engineering ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal for stable solid-state batteries operating at room temperature. Energy Environ. Mater. 2023, 6, e12531.

    Article  CAS  Google Scholar 

  13. Zhu, C. L.; Wu, D. X.; Wang, Z. S.; Wang, H. P.; Liu, J. D.; Guo, K. L.; Liu, Q. H.; Ma, J. M. Optimizing NaF-rich solid electrolyte interphase for stabilizing sodium metal batteries by electrolyte additive. Adv. Funct. Mater. 2024, 34, 2214195.

    Article  CAS  Google Scholar 

  14. Xu, M. Y.; Li, Y.; Ihsan-Ul-Haq, M.; Mubarak, N.; Liu, Z. J.; Wu, J. X.; Luo, Z. T.; Kim, J. K. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 2022, 44, 477–486.

    Article  Google Scholar 

  15. Wang, Y. L.; Liu, F. M.; Fan, G. L.; Qiu, X. G.; Liu, J. D.; Yan, Z. H.; Zhang, K.; Cheng, F. Y.; Chen, J. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J. Am. Chem. Soc. 2021, 143, 2829–2837.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, P. C.; Xiao, P.; Lu, M.; Wang, H.; Jin, N.; Lin, Z. F. Lithium storage properties of Ti3C2Tx (Tx = F, Cl, Br) MXenes. Chin. Chem. Lett. 2023, 34, 107426.

    Article  CAS  Google Scholar 

  17. Xia, H. C.; Qu, G.; Yin, H. B.; Zhang, J. A. Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J. Mater. Chem. A 2020, 8, 15358–15372.

    Article  CAS  Google Scholar 

  18. Man, Q. Y.; An, Y. L.; Liu, C. K.; Shen, H. T.; Xiong, S. L.; Feng, J. K. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review. J. Energy Chem. 2023, 76, 576–600.

    Article  CAS  Google Scholar 

  19. Wang, J.; Du, C. F.; Xue, Y.; Tan, X.; Kang, J.; Gao, Y.; Yu, H.; Yan, Q. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 2021, 1, 20210024.

    Article  PubMed  PubMed Central  Google Scholar 

  20. He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

    Article  CAS  PubMed  Google Scholar 

  22. Xia, H. C.; Zan, L. X.; Yuan, P. F.; Qu, G.; Dong, H. L.; Wei, Y. F.; Yu, Y.; Wei, Z. Y.; Yan, W. F.; Hu, J. S. et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-Nx towards enhanced sodium ion storage. Angew. Chem., Int. Ed. 2023, 62, e202218282.

    Article  CAS  Google Scholar 

  23. Bai, X.; Han, J. Y.; Niu, X. D.; Guan, J. Q. The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Res. 2023, 16, 10796–10802.

    Article  CAS  Google Scholar 

  24. Luo, F.; Roy, A.; Sougrati, M. T.; Khan, A.; Cullen, D. A.; Wang, X. L.; Primbs, M.; Zitolo, A.; Jaouen, F.; Strasser, P. Structural and reactivity effects of secondary metal doping into iron-nitrogen-carbon catalysts for oxygen electroreduction. J. Am. Chem. Soc. 2023, 145, 14737–14747.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

    Article  CAS  PubMed  Google Scholar 

  26. Yin, H. B.; Xia, H. C.; Zhao, S. Y.; Li, K. X.; Zhang, J. N.; Mu, S. C. Atomic level dispersed metal-nitrogen-carbon catalyst toward oxygen reduction reaction: Synthesis strategies and chemical environmental regulation. Energy Environ. Mater. 2021, 4, 5–18.

    Article  CAS  Google Scholar 

  27. Wang, Y. X.; Cui, X. Z.; Peng, L. W.; Li, L. L.; Qiao, J. L.; Huang, H. T.; Shi, J. L. Metal-nitrogen-carbon catalysts of specifically coordinated configurations toward typical electrochemical redox reactions. Adv. Mater. 2021, 33, 2100997.

    Article  CAS  Google Scholar 

  28. Zhu, C.; Yang, J.; Zhang, J.; Wang, X.; Gao, Y.; Wang, D.; Pan, H. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

    Article  CAS  Google Scholar 

  29. Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G. Jr; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

    Article  CAS  PubMed  Google Scholar 

  30. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J.; Li, Y. S.; Liu, P.; Wang, F.; Yao, Q. R.; Zou, Y. J.; Zhou, H. Y.; Balogun, M. S.; Deng, J. Q. Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries. J. Cent. South Univ. 2021, 28, 361–369.

    Article  CAS  Google Scholar 

  32. Ramasubramanian, A.; Yurkiv, V.; Foroozan, T.; Ragone, M.; Shahbazian-Yassar, R.; Mashayek, F. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 2019, 123, 10237–10245.

    Article  CAS  Google Scholar 

  33. Gao, Y.; Zhang, B. Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv. Mater. 2023, 35, 2205421.

    Article  CAS  Google Scholar 

  34. Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.

    Article  Google Scholar 

  35. Meng, Y. S.; Srinivasan, V.; Xu, K. Designing better electrolytes. Science 2022, 378, eabq3750.

    Article  CAS  PubMed  Google Scholar 

  36. Feng, X. Y.; Fang, H.; Wu, N.; Liu, P. C.; Jena, P.; Nanda, J.; Mitlin, D. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule 2022, 6, 543–587.

    Article  CAS  Google Scholar 

  37. Miao, X.; Guan, S. D.; Ma, C.; Li, L. L.; Nan, C. W. Role of interfaces in solid-state batteries. Adv. Mater. 2023, 35, 2206402.

    Article  CAS  Google Scholar 

  38. Peng, M. Q.; Shin, K.; Jiang, L. X.; Jin, Y.; Zeng, K.; Zhou, X. L.; Tang, Y. B. Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem., Int. Ed. 2022, 61, e202206770.

    Article  CAS  Google Scholar 

  39. Xia, H. C.; Zan, L. X.; Qu, G.; Tu, Y. C.; Dong, H. L.; Wei, Y. F.; Zhu, K. X.; Yu, Y.; Hu, Y. F.; Deng, D. H. et al. Evolution of a solid electrolyte interphase enabled by FeNx/C catalysts for sodium-ion storage. Energy Environ. Sci. 2022, 15, 771–779.

    Article  CAS  Google Scholar 

  40. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  41. Gan, T.; Wang, D. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2023, 17, 18–38.

    Article  Google Scholar 

  42. Wei, Y. F.; Xia, H. C.; Yan, W. F.; Zhang, J. N. Recent processing of interaction mechanisms of single metallic atom/clusters in energy electrocatalysis. Energy Mater. 2023, 3, 300033.

    CAS  Google Scholar 

  43. Zhang, Y. Q.; Yang, J.; Ge, R. Y.; Zhang, J. J.; Cairney, J. M.; Li, Y.; Zhu, M. Y.; Li, S. A.; Li, W. X. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 2022, 461, 214493.

    Article  CAS  Google Scholar 

  44. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 1934, 46, 1002–1011.

    Article  CAS  Google Scholar 

  45. Feder, R. Spin polarization in low-energy electron diffraction from W(001). Phys. Rev. Lett. 1976, 36, 598–600.

    Article  CAS  Google Scholar 

  46. Wang, Y. J.; Cheng, W. Z.; Yuan, P. F.; Yang, G. G.; Mu, S. C.; Liang, J. L.; Xia, H. C.; Guo, K.; Liu, M. L.; Zhao, S. Y. et al. Boosting nitrogen reduction to ammonia on FeN4 sites by atomic spin regulation. Adv. Sci. 2021, 8, 2102915.

    Article  CAS  Google Scholar 

  47. Oliver, G. L.; Perdew, J. P. Spin-density gradient expansion for the kinetic energy. Phys. Rev. A 1979, 20, 397–403.

    Article  CAS  Google Scholar 

  48. Cole, L. A.; Perdew, J. P. Calculated electron affinities of the elements. Phys. Rev. A 1982, 25, 1265–1271.

    Article  CAS  Google Scholar 

  49. Liu, X. C.; Choi, M. S.; Hwang, E.; Yoo, W. J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425.

    Article  CAS  Google Scholar 

  50. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  CAS  PubMed  Google Scholar 

  51. Choi, C. H.; Choi, W. S.; Kasian, O.; Mechler, A. K.; Sougrati, M. T.; Brüller, S.; Strickland, K.; Jia, Q. Y.; Mukerjee, S.; Mayrhofer, K. J. J. et al. Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew. Chem., Int. Ed. 2017, 56, 8809–8812.

    Article  CAS  Google Scholar 

  52. Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

    Article  CAS  PubMed  Google Scholar 

  53. Kramm, U. I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J. P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mossbauer spectroscopy and other techniques. J. Am. Chem. Soc. 2014, 136, 978–985.

    Article  CAS  PubMed  Google Scholar 

  54. Li, J. S.; Zheng, C. Y.; Zhao, E. L.; Mao, J.; Cheng, Y. H.; Liu, H.; Hu, Z. P.; Ling, T. Ferromagnetic ordering correlated strong metal-oxygen hybridization for superior oxygen reduction reaction activity. Proc. Natl. Acad. Sci. USA 2023, 120, e2307901120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.

    Article  Google Scholar 

  56. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    Article  CAS  Google Scholar 

  57. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

    Article  CAS  Google Scholar 

  58. Barsoukov, E.; Kim, D. H.; Lee, H. S.; Lee, H.; Yakovleva, M.; Gao, Y.; Engel, J. F. Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ionics 2003, 161, 19–29.

    Article  CAS  Google Scholar 

  59. Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 2016, 8, 426–434.

    Article  CAS  PubMed  Google Scholar 

  60. Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid–liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 2010, 55, 2384–2390.

    Article  CAS  Google Scholar 

  62. Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50–56

    Article  CAS  PubMed  Google Scholar 

  63. Gervillié-Mouravieff, C.; Boussard-Plédel, C.; Huang, J. Q.; Leau, C.; Blanquer, L. A.; Yahia, M. B.; Doublet, M. L.; Boles, S. T.; Zhang, X. H.; Adam, J. L. et al. Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries. Nat. Energy 2022, 7, 1157–1169.

    Article  Google Scholar 

  64. Chen, D. C.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B. T.; Qu, C.; El-Sayed, M. A.; Liu, M. L. Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 2019, 19, 2037–2043.

    Article  CAS  PubMed  Google Scholar 

  65. Yin, X. P.; Lu, Z. X.; Wang, J.; Feng, X. C.; Roy, S.; Liu, X. S.; Yang, Y.; Zhao, Y. F.; Zhang, J. J. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, 2109282.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. U22A20107, 22162026, and 42050203), the Science and Technology Research and Develpoment Program Joint Fund Project of Henan Provincial (No. 222301420001), the Distinguished Young Scholars Innovation Team of Zhengzhou University (No. 32320275), Key Research Projects of University in Henan Province (No. 24A150041), Henan Province Science and Technology Research Projects (No. 242102240106), and Postdoctoral Fellowship Program of CPSF (No. GZC20232382). The authors also gratefully acknowledge the BL14W1 and BL11B at Shanghai Synchrotron Radiation Facilities (SSRF) and beamline 4B9A at Beijing Synchrotron Radiation Facility (BSRF) for the XAFS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Nan Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Zan, L., Dong, H. et al. Work-function effect of Ti3C2/Fe-N-C inducing solid electrolyte interphase evolution for ultra-stable sodium storage. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6693-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6693-3

Keywords

Navigation