Skip to main content
Log in

NIR-OLED structures based on lanthanide coordination compounds: synthesis and luminescent properties

  • Advanced Nanomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electroluminescence complexes based on ytterbium and 5-methyl-2-phenyl-4-(2,2,2-trifluoroacetyl)-2,4-dihydro-3H-pyrazol-3-one (HL) ligand and various diimine-type ancillary ligands (2,2-bipyridine, bathophenanthroline, 1,10-phenanthroline) have been synthesized, and corresponding crystals were investigated. [Yb(L)3(bipy)] and [Yb(L)3(bath)] complexes have triclinic structure (P-1), while [Yb(L)3(phen)] complex has orthorhombic structure (P212121). The crystallography parameters were determined. The photoluminescence of the complexes demonstrated only bands resulted from \(^{2} F_{5/2}^{{}} \to^{2} F_{7/2}^{{}}\) transition and corresponding three Stark subcomponents generated due to the crystal field action. NIR-OLED structures with emitting layers based on the [Yb(L)3(bipy)], [Yb(L)3(bath)], and [Yb(L)3(phen)] complexes have been fabricated, and their electroluminescence demonstrated maxima intensities at 978 and 1005 nm. Comparison of NIR-OLEDs power density showed that the maximal power densities of 2.17 (978 nm) and 1.92 (1005 nm) μW × cm−2 were determined for the NIR-OLED based on [Yb(L)3(bath)] complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. ISO 20473 (2007) Optics and photonics — Spectral bands

  2. Minotto A, Haigh PA, Łukasiewicz ŁG, Lunedei E, Gryko DT, Darwazeh I, Cacialli F (2020) Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light Sci Appl 9(1):1–11. https://doi.org/10.1038/s41377-020-0314-z

    Article  CAS  Google Scholar 

  3. Lochner CM (2018) Printed organic light emitting diodes for biomedical applications. Doctoral dissertation, UC Berkeley

  4. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  Google Scholar 

  5. Cao M, Wang X, Zhang M et al (2019) Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater 29:1807398. https://doi.org/10.1002/adfm.201807398

    Article  CAS  Google Scholar 

  6. Yao L-H, Cao W-Q, Shu J-C et al (2021) Tailoring adsorption for tunable lithium ion storage and devices. Chem Eng J 413:127428. https://doi.org/10.1016/j.cej.2020.127428

    Article  CAS  Google Scholar 

  7. Zhang Y, Qiao J (2021) Near-infrared emitting iridium complexes: molecular design, photophysical properties, and related applications. iScience 24:102858. https://doi.org/10.1016/j.isci.2021.102858

    Article  CAS  Google Scholar 

  8. Zysman-Colman E (ed) (2017) Iridium (III) in optoelectronic and photonics applications. John Wiley & Sons, Hoboken

    Google Scholar 

  9. Ly KT, Chen-Cheng RW, Lin HW, Shiau YJ, Liu SH, Chou PT, Tsao C-S, Huang Y-C, Chi Y (2017) Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat Photonics 11(1):63–68. https://doi.org/10.1038/nphoton.2016.230

    Article  CAS  Google Scholar 

  10. Pushkarev AP, Bochkarev MN (2016) Organic electroluminescent materials and devices emitting in UV and NIR regions. Russ Chem Rev 85:1338–1368. https://doi.org/10.1070/RCR4665

    Article  CAS  Google Scholar 

  11. Fu G, Guan J, Li B et al (2018) An efficient and weak efficiency-roll-off near-infrared (NIR) polymer light-emitting diode (PLED) based on a PVK-supported Zn 2+ –Yb 3+ -containing metallopolymer. J Mater Chem C 6:4114–4121. https://doi.org/10.1039/C7TC05400A

    Article  CAS  Google Scholar 

  12. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47. https://doi.org/10.1016/j.ccr.2014.10.013

    Article  CAS  Google Scholar 

  13. Santos HP, Gomes ES, dos Santos MV et al (2019) Synthesis, structures and spectroscopy of three new lanthanide β-diketonate complexes with 4,4′-dimethyl-2,2′-bipyridine. Near-infrared electroluminescence of ytterbium(III) complex in OLED. Inorganica Chim Acta 484:60–68. https://doi.org/10.1016/j.ica.2018.09.030

    Article  CAS  Google Scholar 

  14. Taydakov IV, Zaitsev BE, Krasnoselskiy SS, Starikova ZA (2011) Synthesis, X-ray structure and luminescent properties of Sm3+ ternary complex with novel heterocyclic β-diketone and 1,10-phenanthroline (Phen). J Rare Earths 29:719–722. https://doi.org/10.1016/S1002-0721(10)60529-7

    Article  CAS  Google Scholar 

  15. Metlin MT, Ambrozevich SA, Metlina DA et al (2017) Luminescence of pyrazolic 1,3-diketone Pr3+ complex with 1,10-phenanthroline. J Lumin 188:365–370. https://doi.org/10.1016/J.JLUMIN.2017.04.058

    Article  CAS  Google Scholar 

  16. Taidakov IV, Zaitsev BE, Lobanov AN et al (2013) Synthesis and luminescent properties of neutral Eu(III) and Gd(III) complexes with 1-(1,5-dimethyl-1h-pyrazol-4-yl)-4,4,4-trifluoro-1,3-butanedione and 4,4,5,5,6,6,6-heptafluoro-1-(1-methyl-1H-pyrazol-4-yl)-1,3-hexanedione. Russ J Inorg Chem 58:411–415. https://doi.org/10.1134/S0036023613040190

    Article  CAS  Google Scholar 

  17. Metlina DA, Metlin MT, Ambrozevich SA et al (2018) Luminescence and electronic structure of Nd3+ complex with pyrazole-substituted 1,3-diketone and 1,10-phenanthroline. J Lumin 203:546–553. https://doi.org/10.1016/J.JLUMIN.2018.07.005

    Article  CAS  Google Scholar 

  18. Gontcharenko VE, Kiskin MA, Dolzhenko VD et al (2021) Mono- and Mixed Metal Complexes of Eu3+, Gd3+, and Tb3+ with a Diketone, Bearing Pyrazole Moiety and CHF2-Group: structure, color tuning, and kinetics of energy transfer between lanthanide ions. Molecules 26:2655. https://doi.org/10.3390/molecules26092655

    Article  CAS  Google Scholar 

  19. Taydakov IV, Belousov YA, Lyssenko KA et al (2020) Synthesis, phosphorescence and luminescence properties of novel europium and gadolinium tris-acylpyrazolonate complexes. Inorganica Chim Acta 502:119279. https://doi.org/10.1016/j.ica.2019.119279

    Article  CAS  Google Scholar 

  20. George TM, Varughese S, Reddy MLP (2016) Near-infrared luminescence of Nd 3+ and Yb 3+ complexes using a polyfluorinated pyrene-based β-diketonate ligand. RSC Adv 6:69509–69520. https://doi.org/10.1039/C6RA12220E

    Article  CAS  Google Scholar 

  21. Reid BL, Stagni S, Malicka JM et al (2014) Lanthanoid β-triketonates: a new class of highly efficient NIR emitters for bright NIR-OLEDs. Chem Commun 50:11580–11582. https://doi.org/10.1039/C4CC04961F

    Article  CAS  Google Scholar 

  22. Zhang Z, Yu C, Liu L et al (2016) Efficient near-infrared (NIR) luminescent PMMA-supported hybrid materials doped with tris-β-diketonate Ln3+ complex (Ln=Nd or Yb). J Photochem Photobiol A Chem 314:104–113. https://doi.org/10.1016/j.jphotochem.2015.08.022

    Article  CAS  Google Scholar 

  23. Marchetti F, Pettinari C, Pettinari R et al (2002) A new family of ionic dinuclear strontium (imH2)2[Sr2(Q)6] compounds (imH = imidazole; QH = 1-phenyl-3-methyl-4-acylpyrazol-5-one). J Chem Soc Dalt Trans. https://doi.org/10.1039/b200189f

    Article  Google Scholar 

  24. Zhang X, Liu L, Yu C et al (2016) Highly efficient near-infrared (NIR) luminescent tris- β -diketonate Yb 3+ complex in solution and in PMMA. Inorg Chem Commun 70:153–156. https://doi.org/10.1016/j.inoche.2016.06.006

    Article  CAS  Google Scholar 

  25. Cecchini MM, De Angelis F, Iacobucci C et al (2016) Mild catalytic oxidations of unsaturated fatty acid methyl esters (FAMEs) by oxovanadium complexes. Appl Catal A Gen 517:120–128. https://doi.org/10.1016/j.apcata.2016.01.045

    Article  CAS  Google Scholar 

  26. Marchetti F, Pettinari C, Pettinari R et al (2000) Influence of sterically demanding groups on the structure and stability in the solid and solution state of (acylpyrazolonate)bis(phosphine)copper(I) derivatives. Inorganica Chim Acta 299:65–79. https://doi.org/10.1016/S0020-1693(99)00463-6

    Article  CAS  Google Scholar 

  27. Golubev AS, Tyutin VY, Chkanikov ND et al (1992) Reactions of highly electrophilic polyfluoro unsaturated compounds with pyrazole derivatives. Bull Russ Acad Sci Div Chem Sci 41:2068–2073. https://doi.org/10.1007/BF00863375

    Article  Google Scholar 

  28. Marchetti F, Pettinari C, Cingolani A et al (1999) Tin(IV) and organotin(IV) derivatives of novel β-diketones. J Organomet Chem 580:344–353. https://doi.org/10.1016/S0022-328X(98)01173-5

    Article  CAS  Google Scholar 

  29. Bovio B, Cingolani A, Marchetti F, Pettinari C (1993) Tin(IV) and organotin(IV) complexes containing the anion of some substituted-3-methyl-4-acyl-5-pyrazolones. Crystal structure of dimethylbis(1-phenyl-3-methyl-4-benzoyl pyrazolon-5-ato)tin(IV). J Organomet Chem 458:39–48. https://doi.org/10.1016/0022-328X(93)80455-K

    Article  CAS  Google Scholar 

  30. Okafor EC (1981) The metal complexes of heterocyclic β-diketones and their derivatives, part viii synthesis, structure, proton nmr and infrared spectral studies of the complexes of Al(III), Fe(III), Co(III), Rh(III), In(III), and Zr(IV) with l-phenyl-3-methyl-4-trifluoroa. Zeitschrift für Naturforsch B 36:213–217. https://doi.org/10.1515/znb-1981-0217

    Article  Google Scholar 

  31. Marchetti F, Pettinari C, Pettinari R et al (2007) Areneruthenium(II) 4-Acyl-5-pyrazolonate derivatives: coordination chemistry, redox properties, and reactivity. Inorg Chem 46:8245–8257. https://doi.org/10.1021/ic700394r

    Article  CAS  Google Scholar 

  32. Nagar MS, Ruikar PB, Subramanian MS (1988) Complexes of tetravalent plutonium, uranium and thorium with acylpyrazolones. Inorganica Chim Acta 141:309–312. https://doi.org/10.1016/S0020-1693(00)83925-0

    Article  CAS  Google Scholar 

  33. Deruiter J, Carter DA, Arledge WS, Sullivan PJ (1987) Synthesis and reactions of 4-isopropylidene-1-aryl-3-methyl-2-pyrazolin-5-ones. J Heterocycl Chem 24:149–153. https://doi.org/10.1002/jhet.5570240128

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2015) SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  36. Dolomanov OV, Bourhis LJ, Gildea RJ et al (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  37. Jensen BS, Meier H, Lundquist K, Refn S (1959) The Synthesis of 1-Phenyl-3-methyl-4-acyl-pyrazolones-5. Acta Chem Scand 13:1668–1670. https://doi.org/10.3891/acta.chem.scand.13-1668

    Article  CAS  Google Scholar 

  38. Buckley A (2013) Organic light-emitting diodes (OLEDs): materials, devices and applications, 1st edn. Woodhead Publishing, Sawston

    Book  Google Scholar 

  39. So F (2010) Organic electronics: materials, processing devices and applications. CRC Press, Francis and Taylor, Boca Raton

    Google Scholar 

  40. Bünzli J-CG, Eliseeva SV (2010) Basics of lanthanide photophysics. In: Hänninen P, Härmä H (eds) Lanthanide luminescence. Springe, Berlin, pp 1–45

    Google Scholar 

  41. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels of the trivalent lanthanide Aquo Ions. II. Gd 3+. J Chem Phys 49:4443–4446. https://doi.org/10.1063/1.1669894

    Article  CAS  Google Scholar 

  42. Faustino WM, Malta OL, Teotonio EES et al (2006) Photoluminescence of europium(iii) dithiocarbamate complexes: electronic structure, charge transfer and energy transfer. J Phys Chem A 110:2510–2516. https://doi.org/10.1021/jp056180m

    Article  CAS  Google Scholar 

  43. Korshunov VM, Ambrozevich SA, Taydakov IV et al (2019) Novel β-diketonate complexes of Eu3+ bearing pyrazole moiety for bright photo- and electroluminescence. Dye Pigment 163:291–299. https://doi.org/10.1016/j.dyepig.2018.12.006

    Article  CAS  Google Scholar 

  44. Metlin MT, Goryachii DO, Aminev DF et al (2021) Bright Yb3+ complexes for efficient pure near-infrared OLEDs. Dye Pigment 195:109701. https://doi.org/10.1016/j.dyepig.2021.109701

    Article  CAS  Google Scholar 

  45. Rogozhin AF, Silantyeva LI, Yablonskiy AN et al (2021) Near infrared luminescence of Nd, Er and Yb complexes with perfluorinated 2-mercaptobenzothiazolate and phosphine oxide ligands. Opt Mater (Amst) 118:111241. https://doi.org/10.1016/j.optmat.2021.111241

    Article  CAS  Google Scholar 

  46. Taydakov IV, Akkuzina AA, Avetisov RI et al (2016) Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. J Lumin 177:31–39. https://doi.org/10.1016/j.jlumin.2016.04.017

    Article  CAS  Google Scholar 

  47. Li Z, Zhang H, Yu J (2012) Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes. Thin Solid Films 520(9):3663–3667. https://doi.org/10.1016/j.tsf.2011.12.052

    Article  CAS  Google Scholar 

  48. Yersin H (2007) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Book  Google Scholar 

Download references

Acknowledgements

The research was financially supported by Russian Science Foundation by the grant 19-79-10003. The authors acknowledge support from Lomonosov Moscow State University Program of Development for providing access to single X-ray diffraction equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Avetissov.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 778 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkanov, A., Zakharova, A., Vlasova, T. et al. NIR-OLED structures based on lanthanide coordination compounds: synthesis and luminescent properties. J Mater Sci 57, 8393–8405 (2022). https://doi.org/10.1007/s10853-021-06721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06721-4

Navigation