Skip to main content

Advertisement

Log in

Structural evaluation of ZnO substitution for CaO in glass ionomer cement synthesized by sol-gel method and their properties

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The substitution of ZnO for CaO site and the limitation of ZnO addition in the sol-gel ionomer glass composition at different calcination temperatures were evaluated and characterized in-depth by X-ray powder diffraction and X-ray photoelectron spectroscopy techniques in this study. The relationship between the compressive strength and the final cement structure was demonstrated by the ion-releasing behavior and synchrotron-based X-ray absorption spectroscopy (XAS) technique. The setting time, in vitro cytotoxicity, bioactivity and tooth adhesion ability of the sol-gel GICs were also evaluated. As expected, ZnO containing GICs presented antibacterial properties under the visible light condition as photocatalysis effect. Although the low crosslinking ability of Zn atoms to the polyacrylic liquid reduced the compressive strength, the compressive strength could be improved by compromising the calcination temperature. Moreover, this study also shows that the ZnO containing GICs had promising results on the biological properties which offered potential advantages in clinical use.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Wong A, Subar PE, Young DA (2017) Dental caries: an update on dental trends and therapy. Adv Pediatr 64:307–330. https://doi.org/10.1016/j.yapd.2017.03.011

    Article  Google Scholar 

  2. California DB (2005) The fact about filling. Department of consumer affairs, Carlifornia

  3. Sidhu SK, Nicholson JW (2016) A review of glass-ionomer cements for clinical dentistry. J Funct Biomater 7:16. https://doi.org/10.3390/jfb7030016

    Article  CAS  Google Scholar 

  4. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173. https://doi.org/10.1021/nn300934k

    Article  CAS  Google Scholar 

  5. Tiama T, Abd N, Tohamy K, Soliman I (2017) In vitro bioactivity and antibacterial activity of zn and sr containing glass ionomer cement prepared by a quick alkali-mediated sol-gel method. EC Dent Sci 4:136–146

    Google Scholar 

  6. Patil K, Patel A, Kunte S, Shah P, Kaur B, Paranna S (2020) Comparative evaluation of the mechanical properties of zinc-reinforced glass ionomer cement and glass ionomer type IX cement: an in vitro study. Int J Clin Pediatr Dent 13:381–389. https://doi.org/10.5005/jp-journals-10005-1798

    Article  Google Scholar 

  7. Kumar A, Raj A, Singh D, Donthagani S, Kumar M, Ramesh K (2021) A new zinc reinforced glass ionomer cement: a boon in dentistry. J Pharm Bioallied Sci 13:272–275. https://doi.org/10.4103/jpbs.JPBS_730_20

    Article  Google Scholar 

  8. Thongsri O, Srisuwan S, Thaitalay P, Dangwiriyakul R, Aengchuan P, Chanlek N, Talabnin C, Suksaweang S, Rattanachan ST (2021) Influence of Al2O3 and P2O5 contents in sol-gel ionomer glass system on the structure and their cement properties. J Sol-Gel Sci Technol 98:441–451. https://doi.org/10.1007/s10971-021-05519-9

    Article  CAS  Google Scholar 

  9. Zhang S, Stamboulis A (2016) Effect of zinc substitution for calcium on the crystallisation of calcium fluoro-alumino-silicate glasses. J Non Cryst Solids 432:300–306. https://doi.org/10.1016/j.jnoncrysol.2015.10.025

    Article  CAS  Google Scholar 

  10. Kusumoto H (2009) Characterisation of Mg, Sr, and Zn containing fluoro-aluminosilicate glasses and their glass polyalkenoate cements. PhD Dissertation, Imperial College, London

  11. Bertolini MJ, Zaghete MA, Gimenes R (2005) Development of an experimental glass ionomer cement containing niobium and fluoride. J Non Cryst Solids 351:3884–3887. https://doi.org/10.1016/j.jnoncrysol.2005.10.008

    Article  CAS  Google Scholar 

  12. Kajihara K (2013) Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J Asian Ceram Soc 1:121–133. https://doi.org/10.1016/j.jascer.2013.04.002

    Article  Google Scholar 

  13. Mukherjee SP (1980) Sol-gel processes in glass science and technology. J Non Cryst Solids 42:477–488. https://doi.org/10.1016/0022-3093(80)90046-0

    Article  CAS  Google Scholar 

  14. Roy B, Jain H, Saha SK, Chakravorty D (1995) Comparison of structure of alkali silicate glasses prepared by sol-gel and melt-quench methods. J Non Cryst Solids 183:268–276. https://doi.org/10.1016/0022-3093(94)00633-4

    Article  CAS  Google Scholar 

  15. Wren A, Clarkin O, Laffir F, Ohtsuki C, Kim IY, Towler M (2009) The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements. J Mater Sci Mater Med 20:1991–1999. https://doi.org/10.1007/s10856-009-3781-6

    Article  CAS  Google Scholar 

  16. Tang V, Otto K, Seering W (2014) Using design of experiments (DOE) for decision analysis. Paper presented at the International Conference on Engineering Design, ICED’07 Cite des sciences et de l'industrie, Paris, France, 01/23

  17. Kidkhunthod P (2017) Structural studies of advanced functional materials by synchrotron-based x-ray absorption spectroscopy: BL5.2 at SLRI, Thailand. Adv Nat Sci Nanosci 8:035007. https://doi.org/10.1088/2043-6254/aa7240

    Article  CAS  Google Scholar 

  18. Newville M (2001) IFEFFIT : interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324. https://doi.org/10.1107/S0909049500016964

    Article  CAS  Google Scholar 

  19. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002. https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  20. Paiva L, Fidalgo TKS, da Costa LP, Maia LC, Balan L, Anselme K, Ploux L, Thiré RMSM (2018) Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J Dent 69:102–109. https://doi.org/10.1016/j.jdent.2017.12.003

    Article  CAS  Google Scholar 

  21. Kamalak H, Kamalak A, Taghizadehghalehjoughi A, Hacımüftüoğlu A, Nalcı KA (2018) Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology 106:377–388. https://doi.org/10.1007/s10266-018-0354-5

    Article  CAS  Google Scholar 

  22. El Mallakh BF, Sarkar NK (1990) Fluoride release from glass-ionomer cements in de-ionized water and artificial saliva. Dent Mater 6:118–122. https://doi.org/10.1016/S0109-5641(05)80041-7

    Article  Google Scholar 

  23. Bogomolova LD, Pavlushkina TK, Morozova IV (2006) Formation of glass synthesized by sol-gel technology. Glass Ceram 63:254–258. https://doi.org/10.1007/s10717-006-0092-y

    Article  CAS  Google Scholar 

  24. Zanotto ED (1992) The formation of unusual glasses by sol-gel processing. J Non Cryst Solids 147–148:820–823. https://doi.org/10.1016/S0022-3093(05)80723-9

    Article  Google Scholar 

  25. Tshabalala KG, Cho SH, Park JK, Pitale SS, Nagpure IM, Kroon RE, Swart HC, Ntwaeaborwa OM (2011) Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4:Ce3+, Tb3+ phosphor. J Alloys Compd 509:10115–10120. https://doi.org/10.1016/j.jallcom.2011.08.054

    Article  CAS  Google Scholar 

  26. Stranick MA, Root MJ (1991) Influence of strontium on monofluorophosphate uptake by hydroxyapatite XPS characterization of the hydroxyapatite surface. Colloids Surf 55:137–147. https://doi.org/10.1016/0166-6622(91)80088-6

    Article  CAS  Google Scholar 

  27. Bezerra CdS, Valerio MEG (2016) Structural and optical study of CaF2 nanoparticles produced by a microwave-assisted hydrothermal method. Physica B Condens Matter 501:106–112. https://doi.org/10.1016/j.physb.2016.08.025

    Article  CAS  Google Scholar 

  28. Zhang D, Qingjie G, Ren Y, Wang C, Shi Q, Wang Q, Xiao X, Wang W, Fan Q (2017) Influence of inversion defects and Cr–Cr pairs on the photoluminescent performance of ZnAl2O4 crystals. J Sol-Gel Sci Technol 85:121–131. https://doi.org/10.1007/s10971-017-4527-4

    Article  CAS  Google Scholar 

  29. Bernasconi A, Dapiaggi M, Pavese A, Agostini G, Bernasconi M, Bowron DT (2016) Modeling the structure of complex aluminosilicate glasses: the effect of zinc addition. J Phys Chem B 120:2526–2537. https://doi.org/10.1021/acs.jpcb.5b10886

    Article  CAS  Google Scholar 

  30. Nicholson JW, Coleman NJ, Sidhu SK (2021) Kinetics of ion release from a conventional glass-ionomer cement. J Mater Sci Mater Med 32:1–10. https://doi.org/10.1007/s10856-021-06501-1

    Article  CAS  Google Scholar 

  31. Kunle A, Nicholson John W (2014) A study of phosphate ion release from glass-ionomer dental cements. Ceram-Silik 58:210–214

    Google Scholar 

  32. Nicholson JW (2018) Maturation processes in glass-ionomer dental cements. Acta Biomater Odontol Scand 4:63–71. https://doi.org/10.1080/23337931.2018.1497492

    Article  CAS  Google Scholar 

  33. Alhalawani AMF, Curran DJ, Boyd D, Towler MR (2016) The role of poly(acrylic acid) in conventional glass polyalkenoate cements. J Polym Eng 36:221–237. https://doi.org/10.1515/polyeng-2015-0079

    Article  CAS  Google Scholar 

  34. Baig MS, Fleming GJP (2015) Conventional glass-ionomer materials: a review of the developments in glass powder, polyacid liquid and the strategies of reinforcement. J Dent 43:897–912. https://doi.org/10.1016/j.jdent.2015.04.004

    Article  CAS  Google Scholar 

  35. Fleming G, Farooq A, Barralet J (2003) Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement. Biomaterials 24:4173–4179. https://doi.org/10.1016/S0142-9612(03)00301-6

    Article  CAS  Google Scholar 

  36. Dudev M, Wang J, Dudev T, Lim C (2006) Factors governing the metal coordination number in metal complexes from cambridge structural database analyses. J Phys Chem B 110:1889–1895. https://doi.org/10.1021/jp054975n

    Article  CAS  Google Scholar 

  37. Pan HB, Darvell BW (2007) Solubility of calcium fluoride and fluorapatite by solid titration. Arch Oral Biol 52:861–868. https://doi.org/10.1016/j.archoralbio.2007.03.002

    Article  CAS  Google Scholar 

  38. Bonapasta AA, Buda F, Colombet P (2001) Interaction between Ca ions and poly(acrylic acid) chains in macro-defect-free cements: a theoretical study. Chem Mater 13:64–70. https://doi.org/10.1021/cm000505o

    Article  CAS  Google Scholar 

  39. Katz AK, Glusker JP, Beebe SA, Bock CW (1996) Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc 118:5752–5763. https://doi.org/10.1021/ja953943i

    Article  CAS  Google Scholar 

  40. Vao-soongnern V, Merat K, Horpibulsuk S (2015) Interaction of the calcium ion with poly(acrylic acid) as investigated by a combination of molecular dynamics simulation and X-ray absorption spectroscopy. J Polym Res 23:7. https://doi.org/10.1007/s10965-015-0895-z

    Article  CAS  Google Scholar 

  41. Daley T, Opuni KB, Raj E, Dent AJ, Cibin G, Hyde TI, Sankar G (2021) Monitoring the process of formation of ZnO from ZnO2 using in situ combined XRD/XAS technique. J Condens Matter Phys 33:264002. https://doi.org/10.1088/1361-648x/abfb91

    Article  CAS  Google Scholar 

  42. Thomas SA, Mishra B, Myneni SCB (2019) High energy resolution-X-ray absorption near edge structure spectroscopy reveals Zn ligation in whole cell bacteria. J Phys Chem Lett 10:2585–2592. https://doi.org/10.1021/acs.jpclett.9b01186

    Article  CAS  Google Scholar 

  43. Krężel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 611:3–19. https://doi.org/10.1016/j.abb.2016.04.010

    Article  CAS  Google Scholar 

  44. Schuhladen K, Stich L, Schmidt J, Steinkasserer A, Boccaccini AR, Zinser E (2020) Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomater Sci 8:2143–2155. https://doi.org/10.1039/C9BM01691K

    Article  CAS  Google Scholar 

  45. Joe A, Park S-H, Shim K-D, Kim D-J, Jhee K-H, Lee H-W, Heo C-H, Kim H-M, Jang E-S (2017) Antibacterial mechanism of ZnO nanoparticles under dark conditions. J Ind Eng Chem 45:430–439. https://doi.org/10.1016/j.jiec.2016.10.013

    Article  CAS  Google Scholar 

  46. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  47. Brauer DS, Gentleman E, Farrar DF, Stevens MM, Hill RG (2011) Benefits and drawbacks of zinc in glass ionomer bone cements. Biomed Mater 6:045007. https://doi.org/10.1088/1748-6041/6/4/045007

    Article  CAS  Google Scholar 

  48. Patrón-Romero L, Luque PA, Soto-Robles CA, Nava O, Vilchis-Nestor AR, Barajas-Carrillo VW, Martínez-Ramírez CE, Chávez Méndez JR, Alvelais Palacios JA, Leal Ávila MÁ, Almanza-Reyes H (2020) Synthesis, characterization and cytotoxicity of zinc oxide nanoparticles by green synthesis method. J Drug Deliv Sci Technol 60:101925. https://doi.org/10.1016/j.jddst.2020.101925

    Article  CAS  Google Scholar 

  49. Saber M, Hayaei-Tehrani R-S, Mokhtari S, Hoorzad P, Esfandiari F (2021) In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicol Vitro 70:105032. https://doi.org/10.1016/j.tiv.2020.105032

    Article  CAS  Google Scholar 

  50. Drouet C (2013) Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds. BioMed Res Int 2013:490946. https://doi.org/10.1155/2013/490946

    Article  Google Scholar 

  51. Lynch R (2011) Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int Dent J 61(Suppl 3):46–54. https://doi.org/10.1111/j.1875-595X.2011.00049.x

    Article  Google Scholar 

  52. Chen S, Cai Y, Engqvist H, Xia W (2016) Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates. Biomatter 6:e1123842. https://doi.org/10.1080/21592535.2015.1123842

    Article  Google Scholar 

  53. Kohno T, Tsuboi R, Kitagawa H, Imazato S (2019) Zinc-Ion release and recharge ability of gic containing biounion filler. In: Paper presented at the 2019 IADR/AADR/CADR general session, Vancouver, BC, Canada

  54. Kaga N, Nagano-Takebe F, Nezu T, Matsuura T, Endo K, Kaga M (2020) Protective effects of GIC and S-PRG filler restoratives on demineralization of bovine enamel in lactic acid solution. Materials 13:2140. https://doi.org/10.3390/ma13092140

    Article  CAS  Google Scholar 

  55. Nagano Y, Mori D, Kumagaia T (2019) Evaluation of caredyne restore on shear-bond strength and remineralization. In: Paper presented at the the third biennial meeting of the international academy of adhesive dentistry, the Palazzo della Cultura e dei Congressi, Bologna, Italy,

Download references

Acknowledgements

The authors would like to thank the Synchrotron Light Research Institute (Public Organization), Thailand for the XPS (BL5.3) and XAS (BL5.2) facilities. Thanks to Mr Chinawat Ekwongsa for helping in XANES and EXAFT data analysis.

Funding

This paper was financially supported by the Royal Golden Jubilee (RGJ) PhD Program from Thailand Research Fund (PHD/0058/2558) and Suranaree University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirirat Tubsungnoen Rattanachan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongsri, O., Srisuwan, S., Thaitalay, P. et al. Structural evaluation of ZnO substitution for CaO in glass ionomer cement synthesized by sol-gel method and their properties. J Mater Sci 57, 633–650 (2022). https://doi.org/10.1007/s10853-021-06517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06517-6

Navigation