Skip to main content
Log in

Enhancing Pr1-xBaxMnO3-δ perovskite charge-transport by electronic structure modulation

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Research has shown half (Pr0.5Ba0.5MnO3-δ) perovskite to exhibit good electronic and magnetic properties. However, it is necessary to clarify whether electronic transport originates in the cubic or hexagonal phase. This paper explores Ba-doped Pr1-xBaxMnO3-δ (x = 0.35, 0.4, 0.45 and 0.5) disordered perovskites with mixed valence states. The cubic-phase transition increases when the EDTA sol–gel synthesis method was used. Electrical conductivity studies demonstrate that cubic \(Pm\overline{3}m\) space group symmetry with a little number of oxygen vacancies enhances conductivity. The origin of this process has been explained in terms of the transition from Mn4+ \(\to \) Mn3+ ions forming hopping sites for electrons/holes. Rietveld refinement, HRTEM, and XPS confirm a complete structure transition to single cubic perovskite. Charge carrier transport clarifies that the cubic perovskite structure enhances the electrical conductivity more effectively than their cubic/hexagonal mixture counterparts. Our results suggest that the activation energy for electron transport is independent of symmetry but not of Pr3+ concentration. Electrical conductivity increases up to twice as much (182 Scm−1) suggested by previously published research, ratifying its potential application as a cathode for SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jin F, Liu X, Chu X, Shen Y, Li J (2021) Effect of nonequivalent substitution of Pr 3+/4+ with Ca 2+ in PrBaCoFeO 5+ δ as cathodes for IT-SOFC. J Mater Sci 56:1147–1161. https://doi.org/10.1007/s10853-020-05375-y

    Article  CAS  Google Scholar 

  2. Shrivastava V, Nagarajan R (2021) Consequences of Bi3+ introduction for Pr3+ in PrAlO3. J Mater Sci 55:15415–15425. https://doi.org/10.1007/s10853-020-05106-3

    Article  CAS  Google Scholar 

  3. Da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrog Energy 42(41):26020–26036. https://doi.org/10.1016/j.ijhydene.2017.08.105

    Article  CAS  Google Scholar 

  4. Flynn J, Li J, Ramirez AP, Subramanian MA (2017) The effect of iridium oxidation state on the electronic properties of perovskite-type solid solutions: Ba2–xLaxInIrO6 and BaLaIn1–yCayIrO6. J Solid State Chem 247:53–59. https://doi.org/10.1016/j.jssc.2016.12.017

    Article  CAS  Google Scholar 

  5. Lin H, Lu H, Cao S, Gui J, Liu D, Park JH (2017) Perovskite-type (Ba 0.15 Sr 0.85)(B 0.15 Co 0.85) O 3− δ (B= Ti, Nb) oxides: structural stability, oxygen nonstoichiometry, and oxygen sorption/desorption properties. Ionics 23(3):717–724. https://doi.org/10.1007/s11581-016-1835-6

    Article  CAS  Google Scholar 

  6. Nakajima T, Yoshizawa H, Ueda Y (2004) A-site randomness effect on structural and physical properties of Ba-based Perovskite Manganites. J Phys Soc Jpn 73(8):2283–2291. https://doi.org/10.1143/JPSJ.73.2283

    Article  CAS  Google Scholar 

  7. Sengodan S, Choi S, Jun A, Shin TH, Ju Y-W, Jeong HY, Shin J, Irvine JTS, Kim G (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14:205–209. https://doi.org/10.1038/nmat4166

    Article  CAS  Google Scholar 

  8. Trukhanov SV, Troyanchuk IO, Fita IM, Szymczak H, Barner K (2001) Comparative study of the magnetic and electrical properties of Pr1-xBaxMnO3-d manganites depending on the preparation conditions. J Magn Magn Mater 237:276–282. https://doi.org/10.1016/S0304-8853(01)00477-2

    Article  CAS  Google Scholar 

  9. Sun Y-F, Zhang Y-Q, Hua B, Behnamian Y, Li J, Cui S-H, Li J-H, Luo J-L (2016) Molybdenum doped Pr0.5Ba0.5MnO3 (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. J Power Sourc 301:237–241. https://doi.org/10.1016/j.jpowsour.2015.09.127

    Article  CAS  Google Scholar 

  10. Kim S, Kim C, Lee JH, Shin J, Lim TH, Kim G (2017) Tailoring Ni-based catalyst by alloying with transition metals (M= Ni Co, Cu, and Fe) for direct hydrocarbon utilization of energy conversion devices. Electrochim Acta 225:399–406. https://doi.org/10.1016/j.electacta.2016.12.178

    Article  CAS  Google Scholar 

  11. Shin TH, Myung JH, Verbraeken M, Kim G, Irvine JTS (2015) Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. Faraday Discuss 182:227–239. https://doi.org/10.1039/C5FD00025D

    Article  CAS  Google Scholar 

  12. Kim S, Lee S, Kim J, Shin J, Kim G (2018) Self-Transforming configuration based on atmospheric-adaptive materials for solid oxide cells. Sci Rep 8:17149. https://doi.org/10.1038/s41598-018-35659-y

    Article  CAS  Google Scholar 

  13. Akahoshi D, Uchida M, Tomioka Y, Arima T, Matsui Y, Tokura Y (2003) Random potential effect near the bicritical region in perovskite manganites as revealed by comparison with the ordered Perovskite analogs. Phys Rev Lett 90(17):177203–177204

    Article  CAS  Google Scholar 

  14. Hou J, Bi L, Qian J, Gong Z, Zhu Z, Liu W (2016) A novel composite cathode Er0.4Bi1.6O3ePr0.5Ba0.5MnO3d for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. J Power Sour 301:306–311. https://doi.org/10.1016/j.jpowsour.2015.10.018

    Article  CAS  Google Scholar 

  15. Autret C, Maignan A, Martin C, Hervieu M, Hardy V, Hébert S, Raveau B (2003) Magnetization steps in a noncharge-ordered manganite, Pr0.5 Ba0.5 MnO3. Appl Phys Lett 82:4746–4748. https://doi.org/10.1063/1.1588756

    Article  CAS  Google Scholar 

  16. Danks AE, Hallb SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112. https://doi.org/10.1039/c5mh00260e

    Article  CAS  Google Scholar 

  17. Motta M, Deimling CV, Saeki MJ, Lisboa-Filho PN (2008) Chelating agent effects in the synthesis of mesoscopic-size superconducting particlesJ Sol-Gel. Sci Technol 46:201–207

    CAS  Google Scholar 

  18. Hashem AM, Abuzeid HM, Abdel-Ghany AE, Mauger A, Zaghibc K, Julien CM (2012) SnO2–MnO2 composite powders and their electrochemical properties. J Power Sourc 202:291–298. https://doi.org/10.1016/j.jpowsour.2011.11.053

    Article  CAS  Google Scholar 

  19. Richter J, Holtappels P, Graule T (2009) Materials design for perovskite SOFC cathodes. Monatsh Chem 140:985–999. https://doi.org/10.1007/s00706-009-0153-3

    Article  CAS  Google Scholar 

  20. Ya Istomin S, Antipov EV (2013) Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ Chem Rev 82:686–700. https://doi.org/10.1070/RC2013v082n07ABEH004390

    Article  CAS  Google Scholar 

  21. Inaba H, Tagaw H (1996) Ceria-based solid electrolytes. Solid State Ion 83:1–16. https://doi.org/10.1016/0167-2738(95)00229-4

    Article  CAS  Google Scholar 

  22. Karim DP, Aldred AT (1979) Localized level hopping transport in La(Sr)CrO3. Phys Rev B 20(6):2255–2263. https://doi.org/10.1103/PhysRevB.20.2255

    Article  CAS  Google Scholar 

  23. Lutkehoff’ S, Neumann M (1995) 3d and 4d, X-ray-photoelectron spectra of Pr under gradual oxidation. Phys Rev B 52:13808–13811. https://doi.org/10.1103/PhysRevB.52.13808

    Article  CAS  Google Scholar 

  24. Pomiro FJ, Gaviría JP, Fouga GG, Vega LD, Bohe AE (2019) Chlorination of Pr2O3 and Pr6O11, crystal structure, magnetic and spectroscopic properties of praseodymium oxychloride. J Alloy Compd 776:919–926. https://doi.org/10.1016/j.jallcom.2018.10.329

    Article  CAS  Google Scholar 

  25. Gurgul J, Rinke MT, Schellenberg I, Pöttgen R (2013) The antimonide oxides REZnSbO and REMnSbO (RE = Ce, Pr) - An XPS study. Solid State Sci 17:122–127. https://doi.org/10.1016/j.solidstatesciences.2012.11.014

    Article  CAS  Google Scholar 

  26. Borchert Y, Frolova V, Kaichev I, Proskin A, Sadykov VA (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109:5728–5738. https://doi.org/10.1021/jp045828c

    Article  CAS  Google Scholar 

  27. Poggio-Fraccari E, Baronetti G, Mariño F (2018) Pr3+ surface fraction in CePr mixed oxides determined by XPS analysis. J Electron Spectrosc Relat Phenom 222:1–4. https://doi.org/10.1016/j.elspec.2017.11.003

    Article  CAS  Google Scholar 

  28. Keswani BC, Devan RS, Kambale RC, James AR, Manandhar S, Kolekar YD, Ramana CV (2017) Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric. J Alloy Compd 712:320–333. https://doi.org/10.1016/j.jallcom.2017.03.301

    Article  CAS  Google Scholar 

  29. Gurgul J, Rinke MT, Schellenberg I, Pöttgen R (2013) The antimonide oxides REZnSbO and REMnSbO (RE ¼ Ce, Pr) e An XPS study. Solid State Sci 17:122e127. https://doi.org/10.1016/j.solidstatesciences.2012.11.014

    Article  CAS  Google Scholar 

  30. Oku M, Hirokawa K (1975) Ikeda, S, X-ray photoelectron spectroscopy of manganese-oxygen systems. J Electron Spectrosc Relat Phenom 7(5):465–473. https://doi.org/10.1016/0368-2048(75)85010-9

    Article  CAS  Google Scholar 

  31. Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315. https://doi.org/10.2138/am-1998-3-414

    Article  CAS  Google Scholar 

  32. Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H, Dokiya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T (2000) Electronic conductivity, seebeck coefficient, defect and electronic structure of nonstoichiometric La12xSrxMnO3. Solid State Ion 132:167–180. https://doi.org/10.1016/S0167-2738(00)00662-7

    Article  CAS  Google Scholar 

  33. van Roosmalen JAM, Cordfunke EHP (1994) The defect chemistry of LaMnO3. J Solid State Chem 110:109–112. https://doi.org/10.1006/jssc.1994.1143

    Article  Google Scholar 

  34. Mizusaki J, Yoshihiro M, Yamauchi S, Fueki K (1985) Nonstoichiometry and defect structure of the Perovskite-type oxides La1-xSrxFeO3-s. J Solid State Chem 58:257–266. https://doi.org/10.1016/0022-4596(85)90243-9

    Article  CAS  Google Scholar 

  35. Richter J, Holtappels P, Graule T, Nakamura T, Gauckler LJ (2009) Materials design for perovskite SOFC cathodes. Monatsh Chem 140:985–999. https://doi.org/10.1007/s00706-009-0153-3

    Article  CAS  Google Scholar 

  36. Gu Q, Wang L, Wang Y, Li X (2019) Effect of praseodymium substitution on La1-xPrxMnO3 (x = 0–0.4) perovskites and catalytic activity for NO oxidation. J Phys Chem Solids 133:52–58. https://doi.org/10.1016/j.jpcs.2019.05.001

    Article  CAS  Google Scholar 

  37. Rodrigues A, Bauer S, Baumbach T (2018) Effect of post-annealing on the chemical state and crystalline structure of PLD Ba0.5Sr0.5TiO3 films analyzed by combined synchrotron x-ray diffraction and x-ray photoelectron spectroscopy. Ceram Int 44:16017–16024. https://doi.org/10.1016/j.ceramint.2018.06.038

    Article  CAS  Google Scholar 

  38. Nakajima T, Kageyama H, Ueda Y (2004) Dramatic change of magnetic property in the A-site ordered/disordered manganites PrBaMn2O6/Pr0:5Ba0:5MnO3. J Magn Magn Mater 272–276:405–406. https://doi.org/10.1016/j.jmmm.2003.12.341

    Article  CAS  Google Scholar 

  39. Satapathy S, Singh MK, Pandit P, Gupta PK (2012) Relaxor ferroelectric behavior of BaMnO3 (2H) at room temperature. Appl Phys Lett 100:042904. https://doi.org/10.1063/1.3679176

    Article  CAS  Google Scholar 

  40. Varignon J, Ghosez P (2013) Improper ferroelectricity and multiferroism in 2H-BaMnO3. Phys Rev B 87:140403. https://doi.org/10.1103/PhysRevB.87.140403

    Article  CAS  Google Scholar 

  41. Autret C, Martin C, Hervieu M, Maignan A, Raveau B (2003) Pr0.5Sr0.5-xBaxMnO3: size and mismatch effects on structural and magnetic transitions. Chem Mater 15:1886–1896. https://doi.org/10.1021/cm020474s

    Article  CAS  Google Scholar 

  42. Autret C, Maignan A, Martin C, Hervieu M, Hardy V, Hebert S, Raveau B (2003) Magnetization steps in a noncharge-ordered manganite, Pr0.5Ba0.5MnO3. Appl Phys Lett 82:4746–4748. https://doi.org/10.1063/1.1588756

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Carlos Ornelas and Jose Silva Vidaurri for their valuable participation in TEM and XPS characterizations during this work. H. A. Martinez-Rodriguez wants to thank CONACyT Mexico and. COLCIENCIAS (Administrative Department of Science, Technology and Innovation) Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reyes-Rojas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Rodriguez, H.A., Jurado, J.F., Herrera-Pérez, G. et al. Enhancing Pr1-xBaxMnO3-δ perovskite charge-transport by electronic structure modulation. J Mater Sci 56, 16510–16523 (2021). https://doi.org/10.1007/s10853-021-06332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06332-z

Navigation