Skip to main content

Advertisement

Log in

ZnO compact layers used in third-generation photovoltaic devices: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO is a well-known semitransparent semiconductor with wide applicability in semiconducting devices such as solar cells, LEDs, MOSFETs, gas sensor devices, or biosensors. Solar cells are promising devices to contribute in the global goals of green energy economies, but it is still necessary to join forces in order to improve the relation efficiency/cost and to decrease the environmental impact of photovoltaic devices. Third-generation (also known as emerging) photovoltaic technologies are alternatives to the silicon, CdTe and CIGS conventional solar cells which are favorable for high scale or low power clean and low-cost energy production. One of the most used materials in the emerging photovoltaic technologies is the ZnO, which can be used in several emerging devices and which has been widely studied by using different techniques. Here we made a review of the recent contributions related to the use of ZnO layers on emerging solar cells, the synthesis methods used and the pros and cons of those, the role of ZnO films in the different emerging technologies, and the relation between optical and electrical properties of ZnO with the main experimental parameters, as well as the main challenges and perspectives linked to this material in the field of the third-generation photovoltaic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Xiao F, Li C, Sun J, Zhang L (2017) Knowledge domain and emerging trends in organic photovoltaic technology: a scientometric review based on citespace analysis. Front Chem 5:67. https://doi.org/10.3389/fchem.2017.00067

    Article  Google Scholar 

  2. Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E (2019) Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv Mater 31:1806692. https://doi.org/10.1002/adma.201806692

    Article  CAS  Google Scholar 

  3. Semonin EO, Luther JM, Beard MC (2012) Quantum dots for next-generation photovoltaics. Mater Today 15(11):508–515. https://doi.org/10.1016/S1369-7021(12)70220-1

    Article  CAS  Google Scholar 

  4. Park N-G (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18(2):65–72. https://doi.org/10.1016/j.mattod.2014.07.007

    Article  CAS  Google Scholar 

  5. Wilson GM, Al-Jassim M, Metzger WK, Glunz SW, Verlinden P, Xiong G, Mansfield LM, Stanbery BJ, Zhu K, Yan Y, Berry JJ, Ptak AJ, Dimroth F, Kayes BM, Tamboli AC, Peibst R, Catchpole K, Reese MO, Klinga CS, Denholm P, Morjaria M, Deceglie MG, Freeman JM, Mikofski MA, Jordan DC, TamizhMani G, Sulas-Kern DB (2020) The 2020 photovoltaic technologies roadmap. J Phys D: Appl Phys 53:493001. https://doi.org/10.1088/1361-6463/ab9c6a

    Article  CAS  Google Scholar 

  6. Celik I, Ahangharnejhad RH, Song Z, Heben M, Apul D (2020) Emerging photovoltaic (PV) materials for a low carbon economy. Energies 13(16):4131. https://doi.org/10.3390/en13164131

    Article  CAS  Google Scholar 

  7. Batmunkh M (2020) Advances in emerging solar cells. Nanomaterials 10(3):534. https://doi.org/10.3390/nano10030534

    Article  CAS  Google Scholar 

  8. Almosni S, Delamarre A, Jehl Z, Suchet D, Cojocaru L, Giteau M, Behaghel B, Julian A, Ibrahim C, Tatry L, Wang H, Kubo T, Uchida S, Segawa H, Miyashita N, Tamaki R, Shoji Y, Yoshida K, Ahsan N, Watanabe K, Inoue T, Sugiyama M, Nakano Y, Hamamura T, Toupance T, Olivier C, Chambon S, Vignau L, Geffroy C, Cloutet E, Hadziioannou G, Cavassilas N, Rale P, Cattoni A, Collin S, Gibelli F, Paire M, Lombez L, Aureau D, Bouttemy M, Etcheberry A, Okada Y, Guillemoles J-F (2018) Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Sci Technol Adv Mater 19(1):336–369. https://doi.org/10.1080/14686996.2018.1433439

    Article  CAS  Google Scholar 

  9. Nazligul AS, Wang M, Leong Choy K (2020) Recent development in earth-abundant kesterite materials and their applications. Sustainability 12:5138. https://doi.org/10.3390/su12125138

    Article  CAS  Google Scholar 

  10. Satharasinghe A, Hughes-Riley T, Dias T (2020) A review of solar energy harvesting electronic textiles. Sensors 20:5938. https://doi.org/10.3390/s20205938

    Article  CAS  Google Scholar 

  11. Platzer-Björkman C, Barreau N, Bär M, Choubrac L, Grenet L, Heo J, Kubart T, Mittiga A, Sanchez Y, Scragg J (2019) Back and front contacts in kesterite solar cells: state-of-the-art and open questions. J Phys Energy 1:044005. https://doi.org/10.1088/2515-7655/ab3708

    Article  CAS  Google Scholar 

  12. Rai N, Rai S, Singh PK, Lohia P, Dwivedi DK (2020) Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J Mater Sci: Mater Electron 31:16269–16280

    CAS  Google Scholar 

  13. Wang J, Xu L, Zhang B, Lee Y-J, Hsu JWP (2017) n-Type doping induced by electron transport layer in organic photovoltaic devices. Adv Electron Mater. https://doi.org/10.1002/aelm.201600458

    Article  Google Scholar 

  14. Vittala R, Ho K-C (2017) Zinc oxide based dye-sensitized solar cells: A review. Renew Sustain Energy Rev 70:920–935. https://doi.org/10.1016/j.rser.2016.11.273

    Article  CAS  Google Scholar 

  15. NREL, Best Research-Cell Efficiencies, advailable online in https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf, Rev 09/22/2020.

  16. Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2020) Solar cell efficiency tables (version 56). Prog Photovoltaics Res Appl 28(7):629–638. https://doi.org/10.1002/pip.3303

    Article  Google Scholar 

  17. Verma A, Martineau D, Hack E, Makha M, Turner E, Nüesch F, Heier J (2020) Towards industrialization of perovskite solar cells using slot die coating. J Mater Chem C 8:6124–6135. https://doi.org/10.1039/D0TC00327A

    Article  CAS  Google Scholar 

  18. Hao M (2020) Perovskites take steps to industrialization. Nat Energy 5:1. https://doi.org/10.1038/s41560-020-0552-6

    Article  Google Scholar 

  19. Shin SS, Lee SJ, Seok SI (2019) Exploring wide bandgap metal oxides for perovskite solar cells. APL Mater 7:022401. https://doi.org/10.1063/1.5055607

    Article  CAS  Google Scholar 

  20. Wang K, Olthof S, Subhania WS, Jiang X, Cao Y, Duan L, Wang H, Du M, Liu SF (2020) Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective. Nano Energy 68:104289. https://doi.org/10.1016/j.nanoen.2019.104289

    Article  CAS  Google Scholar 

  21. Liu D, Kelly T (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon 8:133–138. https://doi.org/10.1038/nphoton.2013.342

    Article  CAS  Google Scholar 

  22. Heo JH, Lee MH, Han HJ, Patil BR, Yu JS, Im SH (2016) Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J Mater Chem A 4:1572–1578. https://doi.org/10.1039/C5TA09520D

    Article  CAS  Google Scholar 

  23. Park J-I, Heob JH, Park S-H, Hong KI, Jeong HG, Im SH, Kim H-K (2017) Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sour 341:340–347. https://doi.org/10.1016/j.jpowsour.2016.12.026

    Article  CAS  Google Scholar 

  24. Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO/ZnO electron transport bilayer. J Mater Chem A 3:19288–19293. https://doi.org/10.1039/C5TA04239A

    Article  CAS  Google Scholar 

  25. Dong X, Hu H, Lin B, Ding J, Yuan N (2014) The effect of ALD-ZnO layer on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures. Chem Commun 50:14405–14408. https://doi.org/10.1039/C4CC04685D

    Article  CAS  Google Scholar 

  26. Zhao W, Wang K, Li H, Yang Z, Liu Z, Sun J, Wang D, Liu SF (2018) Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells. Sol Energy Mater Sol Cells 178:200–207

    Article  CAS  Google Scholar 

  27. Dong J, Shi J, Li D, Luo Y, Meng Q (2015) Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Appl Phys Lett 107:073507. https://doi.org/10.1063/1.4929435

    Article  CAS  Google Scholar 

  28. Song J, Zheng E, Liu L, Wang X-F, Chen G, Tian W, Miyasaka T (2016) Magnesium-doped zinc oxide as electron selective contact layers for efficient perovskite solar cells. Chemsuschem 9:1–9. https://doi.org/10.1002/cssc.201600860

    Article  CAS  Google Scholar 

  29. Baktash A, Amiri O, Sasani A (2016) Improve efficiency of perovskite solar cells by using magnesium doped ZnO and TiO2 compact layers. Superlattices Microstruct 93:128–137. https://doi.org/10.1016/j.spmi.2016.01.026

    Article  CAS  Google Scholar 

  30. Zhao X, Shen H, Zhang Y, Li X, Zhao X, Tai M, Li J, Li J, Li X, Lin H (2016) Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. CS Appl Mater Interfaces 8(12):7826–7833. https://doi.org/10.1021/acsami.6b00520

    Article  CAS  Google Scholar 

  31. Li X, Ye W, Zhou X, Huang F, Zhong D (2017) Increased efficiency for perovskite photovoltaics based on aluminum-doped zinc oxide transparent electrodes via surface modification. J Phys Chem C 121(19):10282–10288. https://doi.org/10.1021/acs.jpcc.7b00419

    Article  CAS  Google Scholar 

  32. Ana Q, Fassla P, Hofstettera YJ, Becker-Kocha D, Bauscha A, Hopkinsona PE, Vaynzof Y (2017) High performance planar perovskite solar cells by ZnO electron transport layer engineering. Nano Energy 39:400–408. https://doi.org/10.1016/j.nanoen.2017.07.013

    Article  CAS  Google Scholar 

  33. Mahmood K, Swain BS, Amassian A (2015) 16.1% Efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv Energy Mater 5:1500568. https://doi.org/10.1002/aenm.201500568

    Article  CAS  Google Scholar 

  34. Azmi R, Hwang S, Yin W, Kim T-W, Ahn TK, Jang S-Y (2018) High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett 3(6):1241–1246. https://doi.org/10.1021/acsenergylett.8b00493

    Article  CAS  Google Scholar 

  35. Chen R, Cao J, Duan Y, Hui Y, Chuong TT, Ou D, Han F, Cheng F, Huang X, Wu B, Zheng N (2019) High-Efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO−ZnS electron transport layer. J Am Chem Soc 141:541–547. https://doi.org/10.1021/jacs.8b11001

    Article  CAS  Google Scholar 

  36. Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao B-W, Zheng N (2018) Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv Mater 30:1705596. https://doi.org/10.1002/adma.201705596

    Article  CAS  Google Scholar 

  37. Azmi R, Lee C-L, Jung IH, Jang S-Y (2018) Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv Energy Mater. https://doi.org/10.1002/aenm.201702934

    Article  Google Scholar 

  38. Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H (2015) Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc 137(7):2674–2679. https://doi.org/10.1021/ja512518r

    Article  CAS  Google Scholar 

  39. Tavakoli MM, Tavakoli R, Yadavc P, Kong J (2019) A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A 7:679–686. https://doi.org/10.1039/C8TA10857A

    Article  CAS  Google Scholar 

  40. Schutt K, Nayak PK, Ramadan AJ, Wenger B, Lin Y-H, Snaith HJ (2019) Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv Funct Mater 29:1900466. https://doi.org/10.1002/adfm.201900466

    Article  CAS  Google Scholar 

  41. Liang L, Huang Z, Cai L, Chen W, Wang B, Chen K, Bai H, Tian Q, Fan B (2014) Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS Appl Mater Interfaces 6:20585–20589. https://doi.org/10.1021/am506672j

    Article  CAS  Google Scholar 

  42. Zhou Y, Gray-Weale A (2016) A numerical model for charge transport and energy conversion of perovskite solar cells. Phys Chem Chem Phys 18:4476. https://doi.org/10.1039/c5cp05371d

    Article  CAS  Google Scholar 

  43. Ma J, Lin Z, Guo X, Zhou L, Su J, Zhang C, Yang Z, Chang J, Liu SF, Hao Y (2019) Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Solar RRL 3:1900096. https://doi.org/10.1002/solr.201900096

    Article  CAS  Google Scholar 

  44. Rehman F, Mahmood K, Khalid A, Zafar MS, Hameed M (2019) Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: toward stable perovskite solar cells with high efficiency of over 20.5%. J Colloid Interface Sci 535:353–362. https://doi.org/10.1016/j.jcis.2018.10.011

    Article  CAS  Google Scholar 

  45. Noh YW, Jin IS, Kim KS, Park SH, Jung JW (2020) Reduced energy loss in SnO2/ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. J Mater Chem A 8:17163–17173. https://doi.org/10.1039/D0TA04721J

    Article  CAS  Google Scholar 

  46. Wang Y-C, Chang J, Zhu L, Li X, Song C, Fang J (2018) Electron-transport-layer-assisted crystallization of perovskite films for high-efficiency planar heterojunction solar cells. Adv Funct Mater 28(9):1706317. https://doi.org/10.1002/adfm.201706317

    Article  CAS  Google Scholar 

  47. Azmi R, Hwang S, Yin W, Kim T-W, Ahn TK, Jang S-Y (2018) High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett 3:241–1246. https://doi.org/10.1021/acsenergylett.8b00493

    Article  CAS  Google Scholar 

  48. Liang H, Hu Y-C, Tao Y, Wu B, Wu Y, Cao J (2019) Existence of Ligands within sol−gel-derived ZnO films and their effect on perovskite solar cells. ACS Appl Mater Interfaces 11:43116–43121. https://doi.org/10.1021/acsami.9b13278

    Article  CAS  Google Scholar 

  49. Ma J, Lin Z, Guo X, He J, Hu Z, Zhang J, Chang J, Hao Y, Su J (2019) Low temperature ZnO/TiO electron-transport layer processed from aqueous solution for highly efficient and stable planar perovskite solar cells. Mater Today Energy 14:100351. https://doi.org/10.1016/j.mtener.2019.100351

    Article  Google Scholar 

  50. Zhang D, Zhang X, Bai S, Liu C, Li Z, Guo W, Gao F (2019) Surface chlorination of ZnO for perovskite solar cells with enhanced efficiency and stability. Sol RRL 3(8):1900154. https://doi.org/10.1002/solr.201900154

    Article  CAS  Google Scholar 

  51. Azmi R, Hadmojo WT, Sinaga S, Lee C-L, Yoon SC, Jung IH, Jang S-Y (2017) High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv Energy Mater 8(5):1701683. https://doi.org/10.1002/aenm.201701683

    Article  CAS  Google Scholar 

  52. Yang Z, Fan Q, Shen T, Jin J, Deng W, Xin J, Huang X, Wang X, Jinhua L (2020) Amine-passivated ZnO electron transport layer for thermal stability enhanced perovskite solar cells. Sol Energy 204:223–230. https://doi.org/10.1016/j.solener.2020.04.074

    Article  CAS  Google Scholar 

  53. Zhang Y-N, Li B, Fu L, Li Q, Yin L-W (2020) MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells. Electrochim Acta 330:135280. https://doi.org/10.1016/j.electacta.2019.135280

    Article  CAS  Google Scholar 

  54. Li X, Yang J, Jiang Q, Chu W, Xin J, Hou J, Lai H (2018) Low temperature processed ternary oxide as an electron transport layer for efficient and stable perovskite solar cells. Electrochim Acta 261:474–481. https://doi.org/10.1016/j.electacta.2017.12.182

    Article  CAS  Google Scholar 

  55. Heo JH, Lee MH, Han HJ, Patil BR, Yu JS, Im SH (2016) Highly efficient low temperature solution processible planar type CH3NH3PbI3 perovskite flexible solar cells. J Mater Chem A 4:1572–1578. https://doi.org/10.1039/C5TA09520D

    Article  CAS  Google Scholar 

  56. Rajbhandari PP, Dhakal TP (2020) Low temperature ALD growth optimization of ZnO, TiO2, and Al2O3 to be used as a buffer layer in perovskite solar cells. J Vac Sci Technol A 38:032406. https://doi.org/10.1116/1.5139247

    Article  CAS  Google Scholar 

  57. Deng W, Yuan Z, Liu S, Yang Z, Li J, Wang E, Wang X, Li J (2019) Plasmonic enhancement for high-efficiency planar heterojunction perovskite solar cells. J Power Sour 432:112–118. https://doi.org/10.1016/j.jpowsour.2019.05.067

    Article  CAS  Google Scholar 

  58. Sun Y, Gao Y, Hu J, Liu C, Sui Y, Lv S, Wang F, Yang L (2020) Comparison of effects of ZnO and TiO2 compact layer on performance of perovskite solar cells. J Solid State Chem 287:121387. https://doi.org/10.1016/j.jssc.2020.121387

    Article  CAS  Google Scholar 

  59. Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov MI, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent EH, Tan H (2019) Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nature Energy 4:864–873. https://doi.org/10.1038/s41560-019-0466-3

    Article  CAS  Google Scholar 

  60. Li C, Wang Y, Choy WCH (2020) Efficient interconnection in perovskite tandem solar cells. Small Methods. https://doi.org/10.1002/smtd.202000093

    Article  Google Scholar 

  61. Jošt M, Kegelmann L, Korte L, Albrecht S (2020) Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv Energy Mater. https://doi.org/10.1002/aenm.201904102

    Article  Google Scholar 

  62. Hosono H, Ueda K (2017) Transparent conductive oxides. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials springer handbooks. Springer, Cham

    Google Scholar 

  63. Wali Q, Elumalai NK, Iqbal Y, Uddin A, Jose R (2018) Tandem perovskite solar cells. Renew Sustain Energy Rev 84:89–110. https://doi.org/10.1016/j.rser.2018.01.005

    Article  CAS  Google Scholar 

  64. Palmstrom AF, Eperon GE, Leijtens T, Prasanna R, Habisreutinger SN, Nemeth W, Gaulding A, Dunfield SP, Reese M, Nanayakkara S, Moot T, Werner J, Liu J, To B, Christensen ST, McGehee MD, van Hest MFAM, Luther JM, Berry JJ, Moore DT (2019) Enabling flexible all-perovskite tandem solar cells. Joule 3(9):2193–2204. https://doi.org/10.1016/j.joule.2019.05.009

    Article  CAS  Google Scholar 

  65. Werner J, Weng C-H, Walter A, Fesquet L, Seif JP, De Wolf S, Niesen B, Ballif C (2016) Efficient monolithic perovskite/silicon tandem solar cell with cell Area >1 cm2. J Phys Chem Lett 7(1):161–166. https://doi.org/10.1021/acs.jpclett.5b02686

    Article  CAS  Google Scholar 

  66. Mufti N, Amrillah T, Taufiq A, Aripriharta S, Diantoro M, Nur H (2020) Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy 207:1146–1157. https://doi.org/10.1016/j.solener.2020.07.065

    Article  CAS  Google Scholar 

  67. Ramanujam J, Singh UP (2017) Copper indium gallium selenide based solar cells – a review. Energy Environ Sci 10:1306. https://doi.org/10.1039/C7EE00826K

    Article  CAS  Google Scholar 

  68. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2013) Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv Energy Mater 3(1):34–38. https://doi.org/10.1002/aenm.201200348

    Article  CAS  Google Scholar 

  69. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4(7):1301465. https://doi.org/10.1002/aenm.201301465

    Article  CAS  Google Scholar 

  70. Nguyen M, Ernits K, Tai KF, Ng CF, Pramana SS, Sasangka WA, Batabyal SK, Holopainen T, Meissner D, Neisser A, Wong LH (2015) ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Sol Energy 111:344–349. https://doi.org/10.1016/j.solener.2014.11.006

    Article  CAS  Google Scholar 

  71. Aaron D, Barkhouse R, Haight R, Sakai N, Hiroi H, Sugimoto H (2012) Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3. Appl Phys Lett 100:193904. https://doi.org/10.1063/1.4714737

    Article  CAS  Google Scholar 

  72. Htay MT, Hashimoto Y, Momose N, Sasaki K, Ishiguchi H, Igarashi S, Ito K (2011) A cadmium-free Cu2ZnSnS4/ZnO Hetrojunction solar cell prepared by practicable processes. Jpn J Appl Phys 50:032301. https://doi.org/10.1143/jjap.50.032301

    Article  Google Scholar 

  73. Kim J, Jang J, Seon Lee D, Ha Moon J, Kim H-J, Hyeok Kim J (2019) Correlation between electrical resistivity and optical transmittance of Mg- and Ga-doped ZnO window layers in NIR-IR region and its effect on current density of kesterite solar cells. Solar Energy 186:46–51. https://doi.org/10.1016/j.solener.2019.03.102

    Article  CAS  Google Scholar 

  74. Adewoyin AD, Olopade MA, Chendo MAC (2018) A comparative study of the effect of transparent conducting oxides on the performance of Cu2ZnSnS4 thin film solar cells. J Comput Electron 17:361–372. https://doi.org/10.1007/s10825-017-1106-4

    Article  CAS  Google Scholar 

  75. Cole-Hamilton DJ (2019) Elements of scarcity. Chem Int 41(4):23–28. https://doi.org/10.1515/ci-2019-0409

    Article  CAS  Google Scholar 

  76. Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S (2013) Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog Photovolt: Res Appl 21:72–76. https://doi.org/10.1002/pip.1174

    Article  CAS  Google Scholar 

  77. Liu R, Chen Y, Ding S, Li Y, Tian Y (2019) Preparation of highly transparent conductive aluminum-doped zinc oxide thin films using a low-temperature aqueous solution process for thin-film solar cells applications. Sol Energy Mater Sol Cells 203:110161. https://doi.org/10.1016/j.solmat.2019.110161

    Article  CAS  Google Scholar 

  78. Jun M-C, Koh J-H (2013) Optical and structural properties of Al-doped ZnO thin films by sol gel process. J Nanosci Nanotechnol 13(5):3403–3407. https://doi.org/10.1166/jnn.2013.7314

    Article  CAS  Google Scholar 

  79. Sukee A, Kantarak E, Singjai P (2017) Preparation of aluminum doped zinc oxide thin films on glass substrate by sparking process and their optical and electrical properties. J Phys: Conf Series 901:012153. https://doi.org/10.1088/1742-6596/901/1/012153

    Article  Google Scholar 

  80. S. Sinha, S. K. Maurya, R. Balasubramaniam and S. K. Sarkar. Development of Al doped ZnO as TCO by Atomic Layer Deposition. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), (2015). https://doi.org/10.1109/pvsc.2015.7355916

  81. Edinger S, Illich P, Bansal N, Zechmeister A, Dimopoulos T (2019) All-solution-processed transparent front contact for monograin layer kesterite solar cells. Prog Photovolt Res Appl 27:547–555. https://doi.org/10.1002/pip.3122

    Article  CAS  Google Scholar 

  82. Shan FK, Kim BI, Liu GX, Liu ZF, Sohn JY, Lee WJ, Yu YS (2004) Blueshift of near band edge emission in Mg doped ZnO thin films and aging. J Appl Phys 95(9):4772. https://doi.org/10.1063/1.1690091

    Article  CAS  Google Scholar 

  83. Wassner TA, Laumer B, Maier S, Laufer A, Meyer BK, Stutzmann M, Eickhoff M (2009) Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. J Appl Phys 105:023505. https://doi.org/10.1063/1.3065535

    Article  CAS  Google Scholar 

  84. Edinger S, Bansal N, Bauch M, Wibowo RA, Újvári G, Hamid R, Trimmel G, Dimopoulos T (2017) Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions. J Mater Sci 52:8591–8602. https://doi.org/10.1007/s10853-017-1084-8

    Article  CAS  Google Scholar 

  85. Dinner O, Shter GE, Grader GS (2016) Solvothermal synthesis of indium-doped zinc oxide TCO films. J Sol-Gel Sci Technol 81(1):3–10. https://doi.org/10.1007/s10971-016-4153-6

    Article  CAS  Google Scholar 

  86. Singh A, Chaudhary S, Pandya DK (2016) High conductivity indium doped ZnO films by metal target reactive co-sputtering. Acta Mater 111:1–9. https://doi.org/10.1016/j.actamat.2016.03.012

    Article  CAS  Google Scholar 

  87. Benzitouni S, Zaabat M, Mahdjoub A, Benaboud A, Boudine B (2018) High transparency and conductivity of heavily In-doped ZnO thin films deposited by dip-coating method. Mater Sci-Pol 36(3):427–434. https://doi.org/10.1515/msp-2018-0037

    Article  CAS  Google Scholar 

  88. Liu Y, Li Y, Zeng H (2013) ZnO-based transparent conductive thin films: doping, performance, and processing. J Nanomater. https://doi.org/10.1155/2013/196521

    Article  Google Scholar 

  89. Jun M-C, Park SU, Koh JH (2012) Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res Lett 7:639. https://doi.org/10.1186/1556-276X-7-639

    Article  CAS  Google Scholar 

  90. Potter DB, Powell MJ, Parkin IP, Carmalt CJ (2018) Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD. J Mater Chem C 6:588–597. https://doi.org/10.1039/C7TC04003B

    Article  CAS  Google Scholar 

  91. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S (2010) Thermally evaporated Cu2ZnSnS4 solar cells. Appl Phys Lett 97:143508. https://doi.org/10.1063/1.3499284

    Article  CAS  Google Scholar 

  92. Washio T, Shinji T, Tajima S, Fukano T, Motohiro T, Jimbo K, Katagiri H (2012) 6% Efficiency Cu2ZnSnS-based thin film solar cells using oxide precursors by open atmosphere type CVD. J Mater Chem 22:4021. https://doi.org/10.1039/c2jm16454j

    Article  CAS  Google Scholar 

  93. Liu Y, Zheng X, Li Q, Long M, Hou J, Zhang N, Zhao G, Fang Y (2017) A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn(S, Se)4 solar cells. J Alloy Compd 695:3146–3151. https://doi.org/10.1016/j.jallcom.2016.11.333

    Article  CAS  Google Scholar 

  94. Chalapathy RBV, Jung GS, Ahn BT (2011) Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells. Sol Energy Mater Sol Cells 95:3216–3221. https://doi.org/10.1016/j.solmat.2011.07.017

    Article  CAS  Google Scholar 

  95. Schubert B-A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Hans-Werner S (2011) Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog Photovolt: Res Appl 19:93–96

    Article  CAS  Google Scholar 

  96. Cannavale A, Martellotta F, Fiorito F, Ayr U (2020) The challenge for building integration of highly transparent photovoltaics and photoelectrochromic devices. Energies 13:1929. https://doi.org/10.3390/en13081929

    Article  CAS  Google Scholar 

  97. Ma Q, Jia Z, Meng L, Zhang J, Zhang H, Huang W, Yuan J, Gao F, Wan Y, Zhang Z, Li Y (2020) Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 78:105272. https://doi.org/10.1016/j.nanoen.2020.105272

    Article  CAS  Google Scholar 

  98. Rasi DD-C, Janssen RAJ (2020) Advances in solution-processed multijunction organic solar cells. Adv Mater 31:1806499. https://doi.org/10.1002/adma.201806499

    Article  CAS  Google Scholar 

  99. Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley DDC, Durrant JR (2006) Degradation of organic solar cells due to air exposure. Sol Energy Mater Sol Cells 90:3520–3530. https://doi.org/10.1016/j.solmat.2006.06.041

    Article  CAS  Google Scholar 

  100. Nikiforov MP, Strzalka J, Jiang Z, Darling SB (2013) Lanthanides: new metallic cathode materials for organic photovoltaic cells. Phys Chem Chem Phys 15:13052–13060. https://doi.org/10.1039/C3CP52327F

    Article  CAS  Google Scholar 

  101. Sachs-Quintana IT, Heumüller T, Mateker WR, Orozco DE, Cheacharoen R, Sweetnam S, Brabec CJ, McGehee MD (2014) Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv Funct Mater 24:3978–3985. https://doi.org/10.1002/adfm.201304166

    Article  CAS  Google Scholar 

  102. Yin Z, Wei J, Zheng Q (2016) Interfacial materials for organic solar cells: recent advances and perspectives. Adv Sci 3:1500362. https://doi.org/10.1002/advs.201500362

    Article  CAS  Google Scholar 

  103. Lai T-H, Tsang S-W, Manders JR, Chen S, So F (2013) Properties of interlayer for organic photovoltaics. Mater Today 16(11):424–432. https://doi.org/10.1016/j.mattod.2013.10.001

    Article  CAS  Google Scholar 

  104. Agnihotri P, Sahu S, Tiwari S (2017) Recent advances & perspectives in electron transport layer of organic solar cells for efficient solar energy harvesting. International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017). https://doi.org/10.1109/ICECDS.2017.8389710

  105. Ganesamoorthya R, Sathiyana G, Sakthivel P (2017) Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energy Mater Sol Cells 161:102–148. https://doi.org/10.1016/j.solmat.2016.11.024

    Article  CAS  Google Scholar 

  106. Facchetti A (2013) Polymer donor–polymer acceptor (all-polymer) solar cells. Mater Today 16(4):123–132. https://doi.org/10.1016/j.mattod.2013.04.005

    Article  CAS  Google Scholar 

  107. Drewelow G, Reed A, Stone C, Roh K, Jiang Z-T, Thi Truc LN, No K, Park H, Lee S (2019) Work function investigations of Al-doped ZnO for band-alignment in electronic and optoelectronic applications. Appl Surf Sci 484:990–998. https://doi.org/10.1016/j.apsusc.2019.04.079

    Article  CAS  Google Scholar 

  108. Sundaram KB, Khan A (1997) Work function determination of zinc oxide. J Vac Sci Technol, A 15(428):428–430. https://doi.org/10.1116/1.580502

    Article  CAS  Google Scholar 

  109. Lange I, Reiter S, Pätzel M, Zykov A, Nefedov A, Hildebrandt J, Hecht S, Kowarik S, Wöll C, Heimel G, Neher D (2014) Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv Funct Mater 24(44):7014–7024. https://doi.org/10.1002/adfm.201401493

    Article  CAS  Google Scholar 

  110. Woo S, Kim WH, Kim H, Yi Y, Lyu H-K, Kim Y (2014) 8.9% Single-stack inverted polymer solar cells with electron-rich polymer nanolayer-modified inorganic electron-collecting buffer layers. Adv Energy Mater 4(7):1301692. https://doi.org/10.1002/aenm.201301692

    Article  CAS  Google Scholar 

  111. Yu W, Huang L, Yang D, Fu P, Zhou L, Zhang J, Li C (2015) Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer. J Mater Chem A 3:10660–10665. https://doi.org/10.1039/C5TA00930H

    Article  CAS  Google Scholar 

  112. Yin Z, Zheng Q, Chen S-C, Cai D, Zhou L, Zhang J (2014) Bandgap tunable Zn1-xMgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells. Adv Energy Mater 4(7):1301404. https://doi.org/10.1002/aenm.201301404

    Article  CAS  Google Scholar 

  113. Yin Z, Zheng Q, Chen S-C, Cai D, Ma Y (2016) Controllable ZnMgO electron-transporting layers for long-term stable organic solar cells with 8.06%efficiency after one-year storage. Adv Energy Mater 6:1501493. https://doi.org/10.1002/aenm.201501493

    Article  CAS  Google Scholar 

  114. MacLeod BA, Schulz P, Cowan SR, Garcia A, Ginley DS, Kahn A, Olson DC (2014) Improved performance in bulk heterojunction organic solar cells with a sol-gel MgZnO electron-collecting layer. Adv Energy Mater 4(13):1400073. https://doi.org/10.1002/aenm.201400073

    Article  CAS  Google Scholar 

  115. Dkhil SB, Duché D, Gaceur M, Thakur AK, Aboura FB, Escoubas L, Simon J-J, Guerrero A, Bisquert J, Garcia-Belmonte G, Bao Q, Fahlman M, Videlot-Ackermann C, Margeat O, Ackermann J (2014) Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells. Adv Energy Mater 4(18):1400805. https://doi.org/10.1002/aenm.201400805

    Article  CAS  Google Scholar 

  116. Soultati A, Verykios A, Speliotis T, Fakis M, Sakellis I, Jaouani H, Davazoglou D, Argitis P, Vasilopoulou M (2019) Organic solar cells of enhanced efficiency and stability using zinc oxide: zinc tungstate nanocomposite as electron extraction layer. Org Electron 71:227–237. https://doi.org/10.1016/j.orgel.2019.05.023

    Article  CAS  Google Scholar 

  117. Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Wurthner F, Ma Y (2015) Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J Am Chem Soc 137:6995–6998. https://doi.org/10.1021/jacs.5b02168

    Article  CAS  Google Scholar 

  118. Liao S-H, Jhuo H-J, Yeh P-N, Cheng Y-S, Li Y-L, Lee Y-H, Sharma S, Chen S-A (2014) Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientif Rep 4:6813

    Article  CAS  Google Scholar 

  119. Tan L, Wang Y, Zhang J, Xiao S, Zhou H, Li Y, Chen Y, Li Y (2019) Highly efficient flexible polymer solar cells with robust mechanical stability. Adv Sci 6:1801180. https://doi.org/10.1002/advs.201801180

    Article  CAS  Google Scholar 

  120. Wang Z, Wang Z, Zhang R, Guo K, Wu Y, Wang H, Hao Y, Chen G (2018) Urea-doped ZnO films as the electron transport layer for high efficiency inverted polymer solar cells. Front Chem 6:398. https://doi.org/10.3389/fchem.2018.00398

    Article  CAS  Google Scholar 

  121. Jagadamma LK, Al-Senani M, El-Labban A, Gereige I, Ngongang Ndjawa GO, Faria JCD, Kim T, Zhao K, Cruciani F, Anjum DH, McLachlan MA, Beaujuge PM, Amassian A (2012) Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer. Adv Energy Mater 5(12):1500204. https://doi.org/10.1002/aenm.201500204

    Article  CAS  Google Scholar 

  122. Wang M, Sun Y, Guo J, Li Z, Liu C, Guo W (2019) Alkali metal salts doped ZnO interfacial layers facilitate charge transport for organic solar cells. Org Electron 74:258–264. https://doi.org/10.1016/j.orgel.2019.07.020

    Article  CAS  Google Scholar 

  123. Yang Z, Zhang T, Li J, Xue W, Han C, Cheng Y, Qian L, Cao W, Yang Y, Chen S (2017) Multiple electron transporting layers and their excellent properties based on organic solar cell. Sci Rep 7:9571. https://doi.org/10.1038/s41598-017-08613-7

    Article  Google Scholar 

  124. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293. https://doi.org/10.1038/ncomms6293

    Article  CAS  Google Scholar 

  125. Liu J, Li J, Liu X, Zhang Z, Zhang J, Tu G (2019) Synthesis of amphiphilic triblock fullerene derivatives and their solvent induced self-assembly in organic solar cells. Org Electron 71:36–44. https://doi.org/10.1016/j.orgel.2019.04.007

    Article  CAS  Google Scholar 

  126. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H-L, Cao Y, Chen Y (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361:1094–1098. https://doi.org/10.1126/science.aat2612

    Article  CAS  Google Scholar 

  127. Chen J-D, Cui C, Li Y-Q, Zhou L, Ou Q-D, Li C, Li Y, Tang J-X (2014) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27(6):1035–1041. https://doi.org/10.1002/adma.201404535

    Article  CAS  Google Scholar 

  128. Ozgur U, Alivov YI, Liu C (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  129. Morkoç H, Özgur Ü (2009) Zinc oxide: fundamentals, materials and device technology. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim (Chapter 1)

    Book  Google Scholar 

  130. Mariano AN, Hanneman RE (1963) Crystallographic polarity of ZnO crystals. J Appl Phys 34(2):384–388. https://doi.org/10.1063/1.1702617

    Article  CAS  Google Scholar 

  131. Li W-J, Shi E-W, Zhong W-Z, Yinet Z-W (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196. https://doi.org/10.1016/S0022-0248(99)00076-7

    Article  CAS  Google Scholar 

  132. Suscavage M, Harris M, Bliss D, Yip P, Wang S-Q, Schwall D, Bouthillette L, Bailey J, Callahan M, Look DC, Reynolds DC, Jones RL, Litton CW (1999) High Quality hydrothermal ZnO crystals. MRS Internet J Nitride Semicond Res 481:G3. https://doi.org/10.1557/S109257830000260X

    Article  Google Scholar 

  133. Zhang C-L, Zhou W-N, Hang Y, Lu Z, Hou H-D, Zuo Y-B, Qin S-J, Lu F-H, Gu S-L (2008) Hydrothermal growth and characterization of ZnO crystals. J Cryst Growth 310:1819–1822. https://doi.org/10.1016/j.jcrysgro.2007.11.215

    Article  CAS  Google Scholar 

  134. Fischer KJ (1976) Vapor phase growth of ZnO crystals in an open flow system. J Cryst Growth 34(1):139–144. https://doi.org/10.1016/0022-0248(76)90272-4

    Article  CAS  Google Scholar 

  135. Hirose M (1971) Growth of zinc oxide single crystals by vapor phase reaction. Jpn J Appl Phys 10(4):401–408. https://doi.org/10.1143/jjap.10.401

    Article  CAS  Google Scholar 

  136. Klimm D, Ganschow S, Schulz D, Fornari R (2008) The growth of ZnO crystals from the melt. J Cryst Growth 310(12):3009–3013. https://doi.org/10.1016/j.jcrysgro.2008.02.027

    Article  CAS  Google Scholar 

  137. Huang F, Lin Z, Lin W, Zhang J, Ding K, Wang Y, Zheng Q, Zhan Z, Yan F, Chen D, Lv P, Wang X (2014) Research progress in ZnO single-crystal: growth, scientific understanding, and device applications. Chin Sci Bull 59(12):1235–1250. https://doi.org/10.1007/s11434-014-0154-4

    Article  CAS  Google Scholar 

  138. Cui J (2012) Zinc oxide nanowires. Mater Charact 64:43–52. https://doi.org/10.1016/j.matchar.2011.11.017

    Article  CAS  Google Scholar 

  139. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:624520. https://doi.org/10.1155/2012/624520

    Article  CAS  Google Scholar 

  140. Segovia M, Sotomayor C, González G, Benavente F (2012) Zinc oxide nanostructures by solvothermal synthesis. Mol Cryst Liq Cryst 555(1):40–50. https://doi.org/10.1080/15421406.2012.634363

    Article  CAS  Google Scholar 

  141. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291(5510):1947–1949. https://doi.org/10.1126/science.1058120

    Article  CAS  Google Scholar 

  142. All Abbas JM, Narin P, Kutlu E, Lisesivdin SB, Ozbay E (2019) Electronic properties of Zigzag ZnO nanoribbons with hydrogen and magnesium passivations. Phys B: Condens Matter. 556:12–16. https://doi.org/10.1016/j.physb.2018.12.003

    Article  CAS  Google Scholar 

  143. Gao PX, Wang ZL (2004) Nanopropeller arrays of zinc oxide. Appl Phys Lett 84(15):2883–2885. https://doi.org/10.1063/1.1702137

    Article  CAS  Google Scholar 

  144. Samadipakchin P, Mortaheb HR, Zolfaghari A (2017) ZnO nanotubes: Preparation and photocatalytic performance evaluation. J Photochem Photobiol, A 337:91–99. https://doi.org/10.1016/j.jphotochem.2017.01.018

    Article  CAS  Google Scholar 

  145. Qu Y, Huang R, Qi W, Shi M, Su R, He Z (2020) Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catal Today 355:397–407. https://doi.org/10.1016/j.cattod.2019.07.056

    Article  CAS  Google Scholar 

  146. Arasu MV, Madankumar A, Theerthagiri J, Salla S, Prabu S, Kim H-S, Al-Dhabi N-A, Arokiyaraj S, Duraipandiyan V (2019) Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines. Mater Sci Eng, C 102:536–540. https://doi.org/10.1016/j.msec.2019.04.068

    Article  CAS  Google Scholar 

  147. Chávez Portillo M, Portillo Moreno O, Gutiérrez Pérez R, Araiza García ME, Hernández Hernández M, Solís Sauceda S, Meléndez Bustamante FJ, Ramírez Gutiérrez RE (2018) Structural and optical properties of ZnO nanocrystals growth by the chemical bath deposition. Optik 157:125–133. https://doi.org/10.1016/j.ijleo.2017.11.062

    Article  CAS  Google Scholar 

  148. Garg V, Sengar BS, Mukherjee S (2018) A review on sputtered chalcopyrite and kesterite thin film solar cell. Ref Module Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-803581-8.10382-0

    Article  Google Scholar 

  149. Kang JH, Song A, Park YJ, Seo JH, Walker B, Chung K-B (2020) Tungsten-doped zinc oxide and indium-zinc oxide films as high-performance electron-transport layers in N-I–P perovskite solar cells. Polymers 12:737. https://doi.org/10.3390/polym12040737w

    Article  CAS  Google Scholar 

  150. Ellmer K (2000) Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. J Phys D: Appl Phys 33(4):R17–R32. https://doi.org/10.1088/0022-3727/33/4/201

    Article  CAS  Google Scholar 

  151. Köble Ch, Greiner D, Klaer J, Klenk R, Meeder A, Ruske F (2009) DC reactive sputtering of aluminium doped zinc oxide films for solar modules controlled by target voltage. Thin Solid Films 518(4):1204–1207. https://doi.org/10.1016/j.tsf.2009.05.055

    Article  CAS  Google Scholar 

  152. Li Z, Gao W (2004) ZnO thin films with DC and RF reactive sputtering. Mater Lett 58:1363–1370. https://doi.org/10.1016/j.matlet.2003.09.028

    Article  CAS  Google Scholar 

  153. Wang Y, Peng ZJ, Wang Q, Fu XL (2016) Tunable electrical resistivity of oxygen-deficient zinc oxide thin films. Surf Eng 33(3):217–225. https://doi.org/10.1080/02670844.2016.1212519

    Article  CAS  Google Scholar 

  154. Zulkifli Z, Sharma S, Shinde S, Kalita G, Tanemura M (2015) Effect of annealing in hydrogen atmosphere on ZnO films for field emission display. IOP Conf Ser Mater Sci Eng 99(2015):012030. https://doi.org/10.1088/1757-899X/99/1/012030

    Article  Google Scholar 

  155. Oh B-Y, Jeong M-C, Kim D-S, Lee W, Myoung J-M (2005) Post-annealing of Al-doped ZnO films in hydrogen atmosphere. J Cryst Growth 281:475–480. https://doi.org/10.1016/j.jcrysgro.2005.04.045

    Article  CAS  Google Scholar 

  156. Tynell T, Karppinen M (2014) Atomic layer deposition of ZnO: a review. Semicond Sci Technol 29(4):043001. https://doi.org/10.1088/0268-1242/29/4/043001

    Article  CAS  Google Scholar 

  157. Cai J, Ma Z, Wejinya U, Zou M, Liu Y, Zhou H, Meng X (2019) A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J Mater Sci 54:5236–5248. https://doi.org/10.1007/s10853-018-03260-3

    Article  CAS  Google Scholar 

  158. Sinha S, Nandi DK, Pawar PS, Kim S-H, Heo J (2020) A review on atomic layer deposited buffer layers for Cu(In, Ga)Se2 (CIGS) thin film solar cells: Past, present, and future. Sol Energy 209:515–537. https://doi.org/10.1016/j.solener.2020.09.022

    Article  CAS  Google Scholar 

  159. Barkhouse DAR, Haight R, Sakai N, Hiroi H, Sugimoto H, Mitzi DB (2012) Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3. Appl Phys Lett 100(19):193904

    Article  Google Scholar 

  160. Azmi FFA, Kadir MFZ, Aziz Shujahadeen B, Muzakir SK (2020) Characterization of opto-electronic properties of thermally evaporated ZnO. Mater Today: Proc 29(1):179–184. https://doi.org/10.1016/j.matpr.2020.05.539

    Article  CAS  Google Scholar 

  161. Oyola JS, Castro JM, Gordillo G (2012) ZnO films grown using a novel procedure based on the reactive evaporation method. Sol Energy Mater Sol Cells 102:137–141. https://doi.org/10.1016/j.solmat.2012.03.011

    Article  CAS  Google Scholar 

  162. Yuvaraj D, Sathyanarayanan M, Narasimha Rao K (2014) Deposition of ZnO nanostructured film at room temperature on glass substrates by activated reactive evaporation. Appl Nanosci 4:801–808. https://doi.org/10.1007/s13204-013-0258-1

    Article  CAS  Google Scholar 

  163. Fatimah Hasim SN, Abdul Hamid MA, Shamsudin R, Jalar A (2009) Synthesis and characterization of ZnO thin films by thermal evaporation. J Phys Chem Solids 70(12):1501–1504. https://doi.org/10.1016/j.jpcs.2009.09.013

    Article  CAS  Google Scholar 

  164. Tuayjaroen R, Jutarosaga T (2017) The influence of oxygen partial pressure on the shape transition of ZnO microstructure by thermal evaporation. Thin Solid Films 631(1):213–218. https://doi.org/10.1016/j.tsf.2017.04.023

    Article  CAS  Google Scholar 

  165. Gruzintsev AN, Volkov VT, Matveeva LN (2002) ZnO Films Deposited By Electron-Beam Evaporation: The Effect Of Ion Bombardment. Russ Microlectron 31(3):193–199. https://doi.org/10.1023/a:1015415120927

    Article  CAS  Google Scholar 

  166. Iqbal A, Mahmood A, Muhammad Khan T, Ahmed E (2013) Structural and optical properties of Cr doped ZnO crystalline thin films deposited by reactive electron beam evaporation technique. Prog Nat Sci: Mater Int 23(1):64–69. https://doi.org/10.1016/j.pnsc.2013.01.010

    Article  Google Scholar 

  167. Palimar S, Bangera KV, Shivakumar GK (2013) Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide. Appl Nanosci 3:549–553. https://doi.org/10.1007/s13204-012-0161-1

    Article  CAS  Google Scholar 

  168. Khudhr M, Abass KH (2016) Effect of Al-doping on the optical properties of ZnO thin film prepared by thermal evaporation technique. Int J Eng Technol 7:25–31. https://doi.org/10.18052/www.scipress.com/IJET.7.25

    Article  Google Scholar 

  169. Sheeba NH, Vattappalam SC, Naduvath J, Sreenivasan PV, Mathew S, Philip RR (2015) Effect of Sn doping on properties of transparent ZnO thin films prepared by thermal evaporation technique. Chem Phys Lett 635:290–294. https://doi.org/10.1016/j.cplett.2015.07.009

    Article  CAS  Google Scholar 

  170. Park WI (2008) Controlled synthesis and properties of ZnO nanostructures grown by metalorganic chemical vapor deposition: a review. Met Mater Int 14:659. https://doi.org/10.3365/met.mat.2008.12.659

    Article  CAS  Google Scholar 

  171. Triboulet R, Perriere J (2003) Epitaxial growth of ZnO films. Prog Cryst Growth Charact Mater 47(2–3):65–138. https://doi.org/10.1016/j.pcrysgrow.2005.01.003

    Article  CAS  Google Scholar 

  172. Tsoutsouva MG, Panagopoulos CN, Papadimitriou D, Fasaki I, Kompitsas M (2011) ZnO thin films prepared by pulsed laser deposition. Mater Sci Eng, B 176(6):480–483. https://doi.org/10.1016/j.mseb.2010.03.059

    Article  CAS  Google Scholar 

  173. Dong Q, Yi Ho CH, Yu H, Salehi A, So F (2019) Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31(17):6833–6840. https://doi.org/10.1021/acs.chemmater.9b01292

    Article  CAS  Google Scholar 

  174. Wang C, Zhang J, Jiang L, Gong L, Xie H, Gao Y, He H, Fang Z, Fan J, Chao Z (2019) All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr 2 planar solar cells with ZnO as electron-transporting materials. J Alloy Compd 817:152768. https://doi.org/10.1016/j.jallcom.2019.152768

    Article  CAS  Google Scholar 

  175. Ludi B, Niederberger M (2013) Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Trans 42(35):12554. https://doi.org/10.1039/c3dt50610j

    Article  CAS  Google Scholar 

  176. Moghri Moazzen MA, Borghei SM, Taleshi F (2013) Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Appl Nanosci 3:295–302. https://doi.org/10.1007/s13204-012-0147-z

    Article  CAS  Google Scholar 

  177. Ha TT, Canh TD, Tuyen NV (2013) A quick process for synthesis of ZnO Nanoparticles With The Aid Of Microwave Irradiation. ISRN Nanotechnol 2013:1–7. https://doi.org/10.1155/2013/497873

    Article  CAS  Google Scholar 

  178. Selvakumar PEN, Natarajan M, Santhanam A, Ramakrishnan VM, Asokan V, Palanichamy P, Balraju P, Kalimuthu A, Velauthapillai D (2020) Interfacing green synthesized flake like-ZnO onto TiO2 as a bilayer electron extraction for efficient perovskite solar cells. New J Chem 44:8422–8433. https://doi.org/10.1039/d0nj01559h

    Article  CAS  Google Scholar 

  179. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881. https://doi.org/10.3390/ma7042833

    Article  CAS  Google Scholar 

  180. Wojnarowicz L, Chudoba T, Koltsov I, Gierlotka S, Dworakowska S, Lojkowski W (2018) Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis. Nanotechnology 29(6):065601. https://doi.org/10.1088/1361-6528/aaa0ef

    Article  CAS  Google Scholar 

  181. Zhang R, Fei C, Li B, Fu H, Tian J, Cao G (2017) Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells. ACS Appl Mater Interfaces 9(11):9785–9794. https://doi.org/10.1021/acsami.7b00726

    Article  CAS  Google Scholar 

  182. Shibayama N, Kanda H, Yusa S, Fukumoto S, Baranwal AK, Segawa H, Miyasaka T, Ito S (2017) All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer. Nano Convergence 4:18. https://doi.org/10.1186/s40580-017-0113-2

    Article  CAS  Google Scholar 

  183. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles – an eco-friendly approach. Res-Eff Technol 3(4):406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  184. Znaidi L (2010) Sol–gel-deposited ZnO thin films: a review. Mater Sci Eng, B 174(1–3):18–30. https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  185. Chen R, Fan J, Liu C, Zhang X, Shen Y, Mai Y (2016) Solution-processed one-dimensional ZnO@CdS Heterojunction toward efficient Cu2ZnSnS4 solar cell with inverted structure. Scientif Rep 6(1):35300. https://doi.org/10.1038/srep35300

    Article  CAS  Google Scholar 

  186. Arif A, Belahssen O, Gareh S, Benramache S (2015) The calculation of band gap energy in zinc oxide films. J Semicond 36(1):013001. https://doi.org/10.1088/1674-4926/36/1/013001

    Article  CAS  Google Scholar 

  187. Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83(10):5447–5451. https://doi.org/10.1063/1.367375

    Article  CAS  Google Scholar 

  188. Maznichenko IV, Ernst A, Bouhassoune M, Henk J, Däne M, Lüders M, Bruno P, Hergert W, Mertig I, Szotek Z, Temmerman WM (2009) Structural phase transitions and fundamental band gaps of MgxZn1−xO alloys from first principles. Phys Rev B 80(14):144101. https://doi.org/10.1103/physrevb.80.144101

    Article  Google Scholar 

  189. I. Khan, I. Ahmad, H. A. Rahnamaye Aliabad, and M. Maqbool, Accurate theoretical bandgap calculations of II-VI semiconductors, Strongly Correlated Electrons, arXiv:1201.0870, (2012), https://arxiv.org/abs/1201.0870

  190. Li Z, Li J, Lei J, Xiong M, Wang N, Zhang S (2021) First-principles study of structure, electrical and optical properties of Al and Mo co-doped ZnO. Vacuum 186:110062. https://doi.org/10.1016/j.vacuum.2021.110062

    Article  CAS  Google Scholar 

  191. Zhang XD, Guo ML, Li WX, Liu CL (2008) First-principles study of electronic and optical properties in wurtzite Zn1−xCdxO. J Appl Phys 103:063721. https://doi.org/10.1063/1.2901033

    Article  CAS  Google Scholar 

  192. Galdámez-Martinez A, Santana G, Güell F, Martínez-Alanis PR, Dutt A (2020) Photoluminescence of ZnO nanowires: a review. Nanomaterials 10:857. https://doi.org/10.3390/nano10050857

    Article  CAS  Google Scholar 

  193. Liao Z-M, Zhang H-Z, Zhou Y-B, Xu J, Zhang J-M, Yu D-P (2008) Surface effects on photoluminescence of single ZnO nanowires. Phys Lett A 372(24):4505–4509. https://doi.org/10.1016/j.physleta.2008.04.013

    Article  CAS  Google Scholar 

  194. N. M. S. Jahed and S. Sivoththaman, Systematic control of carrier concentration and mobility in RF sputtered ZnO/Al:ZnO thin films, Condensed Matter: Material Science, arXiv:1404.4902, (2014), https://arxiv.org/abs/1404.4902

  195. Norton DP, Heo YW, Ivill MP, Ip K, Pearton SJ, Chisholm MF, Steiner T (2004) ZnO: growth, doping and processing. Mater Today 7(6):34–40. https://doi.org/10.1016/S1369-7021(04)00287-1

    Article  CAS  Google Scholar 

  196. Schrier J, Demchenko DO, Alivisatos AP (2007) Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett 7(8):2377–2382. https://doi.org/10.1021/nl071027k

    Article  CAS  Google Scholar 

  197. Yamijala SSRKC, Ali ZA, Wong BM (2019) Acceleration vs accuracy: influence of basis set quality on the mechanism and dynamics predicted by ab initio molecular dynamics. J Phys Chem C 123(41):25113–25120. https://doi.org/10.1021/acs.jpcc.9b03554

    Article  CAS  Google Scholar 

  198. Flores EM, Gouvea RA, Piotrowski MJ, Moreira ML (2018) Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study. Phys Chem Chem Phys 20(7):4953–4961. https://doi.org/10.1039/c7cp08177d

    Article  CAS  Google Scholar 

  199. Liang X, Wang C (2020) Electron and phonon transport anisotropy of ZnO at and above room temperature. Appl Phys Lett 116(4):043903. https://doi.org/10.1063/1.5139563

    Article  CAS  Google Scholar 

  200. Wu Y, Yu N, Liu D, He Y, Liu Y, Liang H, Du G (2013) Electrical anisotropy properties of ZnO nanorods analyzed by conductive atomic force microscopy. Appl Surf Sci 265:176–179. https://doi.org/10.1016/j.apsusc.2012.10.159

    Article  CAS  Google Scholar 

  201. Yu G, Tang C, Song J, Lu W (2014) Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method. Appl Phys Lett 104(15):153109. https://doi.org/10.1063/1.4871703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Universidad Industrial de Santander (Posdoctoral research supporting program VIE). Contract RC N°011-1583.

Author information

Authors and Affiliations

Authors

Contributions

CO, MB, and GO contributed to conceptualization; MB contributed to validation; CO, MB, and GO contributed to formal analysis ; CO contributed to investigation; MB and GO contributed to resources; CO contributed to writing–original draft preparation; MB and GO contributed to writing–review and editing; GO contributed to supervision; MB contributed to project administration.

Corresponding author

Correspondence to C. Otalora.

Ethics declarations

Conflict of interest

This study was funded by Universidad Industrial de Santander Posdoctoral research supporting program VIE (grant number RC N°011–1583). Conflict of Interest: The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otalora, C., Botero, M.A. & Ordoñez, G. ZnO compact layers used in third-generation photovoltaic devices: a review. J Mater Sci 56, 15538–15571 (2021). https://doi.org/10.1007/s10853-021-06275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06275-5

Navigation