Skip to main content

Advertisement

Log in

Ligand-free Au nanoclusters/g-C3N4 ultra-thin nanosheets composite photocatalysts for efficient visible-light-driven photocatalytic H2 generation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report the synthesis of ligand-free Au nanoclusters (NCs)/g-C3N4 ultra-thin nanosheets (NSs) composite via a facile wet-impregnation method with post-annealing. On the one hand, post-annealing was used for the exfoliation of multi-layered g-C3N4 to obtain ultra-thin NSs; on the other hand, after Au25(Cys)18 NCs were loaded, post-annealing was further adopted to remove the ligands to obtain clean surface on Au NCs. It is demonstrated that the loaded Au NCs were aggregating resistant by post-annealing. Constructing heterojunctions with appropriate inter-band structures between the ligand-free Au NCs and the ultra-thin g-C3N4 NSs, along with the mono-distribution of the Au NCs and their intimate contact with g-C3N4 NSs ensured the smooth interfacial charge transfer. As a result, the composite photocatalysts exhibited efficient visible-light-induced photocatalytic H2 generation, mainly due to the local electric field enhancement induced by excitation of Au NCs under visible light and the improved charge separation in g-C3N4. This work provides a general strategy for the synthesis of noble metal NCs based composites with clean surface as the efficient photocatalysts for solar energy conversion.

Graphical Abstract

A stepwise post-annealing strategy is exploited to prepare g-C3N4 ultra-thin nanosheets modified with highly dispersed ligand-free Au nanoclusters for efficient photocatalytic hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kapilashrami M, Zhang Y, Liu Y-S, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–9707. https://doi.org/10.1021/cr5000893

    Article  CAS  Google Scholar 

  2. Nasir MS, Yang G, Ayub I, Wang S, Wang L, Wang X et al (2019) Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl Catal B Environ 257:117855. https://doi.org/10.1016/j.apcatb.2019.117855

    Article  CAS  Google Scholar 

  3. Wondraczek L, Tyystjaervi E, Mendez-Ramos J, Mueller FA, Zhang Q (2015) Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis. Adv Sci 2:1500218. https://doi.org/10.1002/advs.201500218

    Article  CAS  Google Scholar 

  4. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  5. Yi H, Huang D, Qin L, Zeng G, Lai C, Cheng M et al (2018) Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl Catal B Environ 239:408–424. https://doi.org/10.1016/j.apcatb.2018.07.068

    Article  CAS  Google Scholar 

  6. Lu N, Sun M, Wei X, Zhang P, Zhang Z (2020) Facile synthesis of lacunary keggin-type phosphotungstates-decorated g-C3N4 nanosheets for enhancing photocatalytic H2 generation. Polym 12:1961. https://doi.org/10.3390/polym12091961

    Article  CAS  Google Scholar 

  7. Jing X, Lu N, Huang J, Zhang P, Zhang Z (2021) One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. J Energy Chem 58:397–407. https://doi.org/10.1016/j.jechem.2020.10.032

    Article  Google Scholar 

  8. Fan W, Zhang Q, Wang Y (2013) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15:2632–2649. https://doi.org/10.1039/c2cp43524a

    Article  CAS  Google Scholar 

  9. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. https://doi.org/10.1039/c4ta04461d

    Article  CAS  Google Scholar 

  10. Long R, Li Y, Song L, Xiong YJ (2015) Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small 11:3873–3889. https://doi.org/10.1002/smll.201403777

    Article  CAS  Google Scholar 

  11. Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23:4996–5008. https://doi.org/10.1002/adfm.201203547

    Article  CAS  Google Scholar 

  12. Liu Y, Zhang Z, Fang Y, Liu B, Huang J, Miao F et al (2019) IR-Driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane. Appl Catal B Environ 252:164–173. https://doi.org/10.1016/j.apcatb.2019.04.035

    Article  CAS  Google Scholar 

  13. Dong D, Yan C, Huang J, Lu N, Wu P, Wang J, Zhang Z (2019) An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H2 evolution. J Mater Chem A 7:24180–24185. https://doi.org/10.1039/C9TA06141J

    Article  CAS  Google Scholar 

  14. Li J, Wu D, Iocozzia J, Du H, Liu X, Yuan Y et al (2019) Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation. Angew Chem Int Ed 58:1985–1989. https://doi.org/10.1002/anie.201813117

    Article  CAS  Google Scholar 

  15. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem Rev 116:7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  16. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. https://doi.org/10.1039/c4cs00126e

    Article  CAS  Google Scholar 

  17. Cao SW, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phy Chem Lett 5:2101–2107. https://doi.org/10.1021/jz500546b

    Article  CAS  Google Scholar 

  18. Zhang S, Li J, Wang X, Huang Y, Zeng M, Xu J (2015) Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. J Mater Chem A 3:10119–10126. https://doi.org/10.1039/c5ta00635j

    Article  CAS  Google Scholar 

  19. Jourshabani M, Lee BK, Shariatinia Z (2020) From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: recent progress and future challenges. Appl Catal B Environ 276:119157. https://doi.org/10.1016/j.apcatb.2020.119157

    Article  CAS  Google Scholar 

  20. Yi JJ, El-Alami W, Song YH, Li HM, Ajayan PM, Xu H (2020) Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem Eng J 382:122812. https://doi.org/10.1016/j.cej.2019.122812

    Article  CAS  Google Scholar 

  21. Li XB, Xiong J, Gao XM, Huang JT, Feng ZJ, Chen Z et al (2019) Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J Alloys Compd 802:196–209. https://doi.org/10.1016/j.jallcom.2019.06.185

    Article  CAS  Google Scholar 

  22. Liang Q, Li Z, Huang Z-H, Kang F, Yang Q-H (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25:6885–6892. https://doi.org/10.1002/adfm.201503221

    Article  CAS  Google Scholar 

  23. Han Q, Wang B, Zhao Y, Hu C, Qu L (2015) A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew Chem Int Ed 54:11433–11437. https://doi.org/10.1002/anie.201504985

    Article  CAS  Google Scholar 

  24. Zheng D, Pang C, Liu Y, Wang X (2015) Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem Comm 51:9706–9709. https://doi.org/10.1039/c5cc03143e

    Article  CAS  Google Scholar 

  25. Zhang S, Li J, Zeng M, Li J, Xu J, Wang X (2014) Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride: C plus Fe as an example. Chem Eur J 20:9805–9812. https://doi.org/10.1002/chem.201400060

    Article  CAS  Google Scholar 

  26. Zhang JS, Zhang MW, Yang C, Wang XC (2014) Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv Mater 26:4121–4126. https://doi.org/10.1002/adma.201400573

    Article  CAS  Google Scholar 

  27. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176. https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  28. Lee M, Amaratunga P, Kim J, Lee D (2010) TiO2 nanoparticle photocatalysts modified with monolayer-protected gold clusters. J Phys Chem C 114:18366–18371. https://doi.org/10.1021/jp106337k

    Article  CAS  Google Scholar 

  29. Wang C, Lv P, Xue D, Cai Y, Yan X, Xu L et al (2018) Zero-dimensional/two-dimensional Au25(Cys)18 nanoclusters/g-C3N4 nanosheets composites for enhanced photocatalytic hydrogen production under visible light. ACS Sustain Chem Eng 6:8447–8457. https://doi.org/10.1021/acssuschemeng.8b00643

    Article  CAS  Google Scholar 

  30. Yuan X, Zhang B, Luo Z, Yao Q, Leong DT, Yan N et al (2014) Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew Chem Int Ed 53:4623–4627. https://doi.org/10.1002/anie.201311177

    Article  CAS  Google Scholar 

  31. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  32. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  33. Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO, DuChene JS et al (2014) Surface plasmon-driven water reduction: gold nanoparticle size matters. J Am Chem Soc 136:9842–9845. https://doi.org/10.1021/ja504097v

    Article  CAS  Google Scholar 

  34. Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N (2016) Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev 322:1–29. https://doi.org/10.1016/j.ccr.2016.05.003

    Article  CAS  Google Scholar 

  35. Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758. https://doi.org/10.1021/ar300213z

    Article  CAS  Google Scholar 

  36. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166. https://doi.org/10.1016/s0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  37. Chen Y-S, Kamat PV (2014) Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J Am Chem Soc 136:6075–6082. https://doi.org/10.1021/ja5017365

    Article  CAS  Google Scholar 

  38. Yu C, Li G, Kumar S, Kawasaki H, Jin R (2013) Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity. J Phy Chem Lette 4:2847–2852. https://doi.org/10.1021/jz401447w

    Article  CAS  Google Scholar 

  39. Luo B, Liu G, Wang L (2016) Recent advances in 2D materials for photocatalysis. Nanoscale 8:6904–6920. https://doi.org/10.1039/c6nr00546b

    Article  CAS  Google Scholar 

  40. Xiao M, Wang ZL, Lyu MQ, Luo B, Wang SC, Liu G et al (2019) Hollow nanostructures for photocatalysis: advantages and challenges. Adv Mater 31:1801369. https://doi.org/10.1002/adma.201801369

    Article  CAS  Google Scholar 

  41. Fang J, Li J, Zhang B, Yuan X, Asakura H, Tanaka T et al (2015) The support effect on the size and catalytic activity of thiolated Au25 nanoclusters as precatalysts. Nanoscale 7:6325–6333. https://doi.org/10.1039/c5nr00549c

    Article  CAS  Google Scholar 

  42. Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J Mater Chem A 2:18924–18928. https://doi.org/10.1039/c4ta04487h

    Article  CAS  Google Scholar 

  43. Zhang B, Fang J, Li J, Lau JJ, Mattia D, Zhong Z et al (2016) Soft, oxidative stripping of alkyl thiolate ligands from hydroxyapatite-supported gold nanoclusters for oxidation reactions. Chem Asian J 11:532–539. https://doi.org/10.1002/asia.201501074

    Article  CAS  Google Scholar 

  44. Gao J, Wang Y, Zhou S, Lin W, Kong Y (2017) A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9:1708–1715. https://doi.org/10.1002/cctc.201700492

    Article  CAS  Google Scholar 

  45. Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C et al (2017) Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater 29:1605148. https://doi.org/10.1002/adma.201605148

    Article  CAS  Google Scholar 

  46. Xue J, Fujitsuka M, Majima T (2019) The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution. Phys Chem Chem Phys 21:2318–2324. https://doi.org/10.1039/c8cp06922k

    Article  CAS  Google Scholar 

  47. Lv C, Qian Y, Yan C, Ding Y, Liu Y, Chen G et al (2018) Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew Chem Int Ed 57:10246–10250. https://doi.org/10.1002/anie.201806386

    Article  CAS  Google Scholar 

  48. Lv P, Zhao C, Lee WJ, Huo S, Kwon S-H, Fang J et al (2019) Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2. Appl Surf Sci 494:508–518. https://doi.org/10.1016/j.apsusc.2019.07.131

    Article  CAS  Google Scholar 

  49. David S, Mahadik MA, Chung HS, Ryu JH, Jang JS (2017) Facile hydrothermally synthesized a novel CdS nanoflower/rutile-TiO2 nanorod heterojunction photoanode used for photoelectrocatalytic hydrogen generation. ACS Sustain Chem Eng 5:7537–7548. https://doi.org/10.1021/acssuschemeng.7b00558

    Article  CAS  Google Scholar 

  50. Jiang L, Li J, Wang K, Zhang G, Li Y, Wu X (2020) Low boiling point solvent mediated strategy to synthesize functionalized monolayer carbon nitride for superior photocatalytic hydrogen evolution. Appl Catal B Environ 260:118181. https://doi.org/10.1016/j.apcatb.2019.118181

    Article  CAS  Google Scholar 

  51. Wei X, Shao C, Li X, Lu N, Wang K, Zhang Z et al (2014) Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution. Nanoscale 8:11034–11043. https://doi.org/10.1039/c6nr01491g

    Article  Google Scholar 

  52. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21706130, 21878157, 22078156, 22008117), and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Financial support from “the Youth Thousand Talents Plan” of China and “the Shuang Chuang Plan” of Jiangsu province for Y.Y. is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Fang or Yang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ding, S., Zhao, C. et al. Ligand-free Au nanoclusters/g-C3N4 ultra-thin nanosheets composite photocatalysts for efficient visible-light-driven photocatalytic H2 generation. J Mater Sci 56, 13736–13751 (2021). https://doi.org/10.1007/s10853-021-06184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06184-7

Navigation