Skip to main content

Advertisement

Log in

Photo-induced synthesis of nanostructured Pt-on-Au/g-C3N4 composites for visible light photocatalytic hydrogen production

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured semiconductor composites are often considered as types of promising photocatalysts and display great prospects in visible light photocatalytic hydrogen production. In this work, nanostructured Pt-on-Au/PCN composites were synthesized by photo-induced synthesis strategy with exfoliated g-C3N4 (PCN) nanosheets as starting materials and served in visible light photocatalytic hydrogen production. The prepared Pt-on-Au/PCN composites showed enhanced visible light absorption and photocatalytic hydrogen production performance. The visible light photocatalytic performance of Pt-on-Au/PCN composites is approximately 54.60 times of pristine g-C3N4 and 3.61 times of Pt/g-C3N4 composites, respectively. These findings could be mainly attributed to the formation of bimetal Pt-on-Au nanostructure for visible light harvesting and charge separation. Besides, possible photocatalytic mechanism of nanostructured Pt-on-Au/PCN composites for hydrogen production is proposed in detail. Current work also offers a new method to design and synthesize other types of metal-on-metal nanostructures for efficient semiconductor photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Ran J, Gao G, Li F-T, Ma T-Y, Du A, Qiao S-Z (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907

    CAS  Google Scholar 

  2. Ye M-Y, Zhao Z-H, Hu Z-F, Liu L-Q, Ji H-M, Shen Z-R, Ma T-Y (2017) 0D/2D Heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Angew Chem Int Edit 56:8407–8411

    CAS  Google Scholar 

  3. Qiao Q, Huang W-Q, Li Y-Y, Li B, Hu W, Peng W, Fan X, Huang G-F (2018) In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. J Mater Sci 53:15882–15894. https://doi.org/10.1007/s10853-018-2762-x

    Article  CAS  Google Scholar 

  4. Xu J, Zhang LW, Shi R, Zhu YF (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772

    CAS  Google Scholar 

  5. Huang J, Li D, Li R, Zhang Q, Chen T, Liu H, Liu Y, Lv W, Liu G (2019) An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem Eng J 374:242–253

    CAS  Google Scholar 

  6. Zhang Y, Di J, Ding P, Zhao J, Gu K, Chen X, Yan C, Yin S, Xia J, Li HM (2019) Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J Colloid Interface Sci 553:530–539

    CAS  Google Scholar 

  7. Zhang L, Yu SN, Zhang JJ, Gong JL (2016) Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities. Chem Sci 7:3500–3505

    CAS  Google Scholar 

  8. Yu X, Huang J, Zhao J, Liu S, Xiang D, Tang Y, Li J, Guo Q, Ma X, Zhao J (2021) Efficient visible light photocatalytic antibiotic elimination performance induced by nanostructured Ag/AgCl@Ti3+-TiO2 mesocrystals. Chem Eng J 403:126359

  9. Shi Q, Li Z, Chen L, Zhang X, Han W, Xie M, Yang J, Jing L (2019) Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl Catal B-Environ 244:641–649

    CAS  Google Scholar 

  10. Cai X, Zhu M, Elbanna OA, Fujitsuka M, Kim S, Mao L, Zhang J, Majima T (2018) Au nanorod photosensitized La2Ti2O7 nanosteps: successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal 8:122–131

    CAS  Google Scholar 

  11. Zhang G-R, Zhao D, Feng Y-Y, Zhang B, Su DS, Liu G, Xu B-Q (2012) Catalytic Pt-on-Au nanostructures: why Pt becomes more active on smaller Au particles. ACS Nano 6:2226–2236

    CAS  Google Scholar 

  12. Zhang Y, Park S-J (2017) Au-pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal 355:1–10

    CAS  Google Scholar 

  13. Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555

    CAS  Google Scholar 

  14. Han C, Gao Y, Liu S, Ge L, Xiao N, Dai D, Xu B, Chen C (2017) Facile synthesis of AuPd/g-C3N4 nanocomposite: an effective strategy to enhance photocatalytic hydrogen evolution activity. Int J Hydrogen Energy 42:22765–22775

    CAS  Google Scholar 

  15. Xue J, Ma S, Zhou Y, Zhang Z, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interface 7:9630–9637

    CAS  Google Scholar 

  16. Zhou N, Polavarapu L, Gao N, Pan Y, Yuan P, Wang Q, Xu Q-H (2013) TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5:4236–4241

    CAS  Google Scholar 

  17. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Mater 8:76–80

    CAS  Google Scholar 

  18. Yu X, Li Z, Liu J, Hu P (2017) Ta-O-C chemical bond enhancing charge separation between Ta4+ doped Ta2O5 quantum dots and cotton-like g-C3N4. Appl Catal B-Environ 205:271–280

    CAS  Google Scholar 

  19. Yu X, Fan X, An L, Liu G, Li Z, Liu J, Hu P (2018) Mesocrystalline Ti3+-TiO2 hybridized g-C3N4 for efficient visible-light photocatalysis. Carbon 128:21–30

    CAS  Google Scholar 

  20. Yu X, Zhao J, Huang J, Zhao J, Guo Y, Tang Y, Ma X, Li Z, Guo Q, Zhao J (2020) Visible light photocatalysis of amorphous Cl–Ta2O5−x microspheres for stabilized hydrogen generation. J Colloid Interface Sci 572:141–150

    CAS  Google Scholar 

  21. Guo Q, Zhao J, Yang Y, Huang J, Tang Y, Zhang X, Li Z, Yu X, Shen J, Zhao J (2020) Mesocrystalline Ta3N5 superstructures with long-lived charges for improved visible light photocatalytic hydrogen production. J Colloid Interface Sci 560:359–368

    CAS  Google Scholar 

  22. Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4:3637–3643

    CAS  Google Scholar 

  23. Yu S, Webster RD, Zhou Y, Yan X (2017) Ultrathin g-C3N4 nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H2 production. Catal Sci Technol 7:2050–2056

    CAS  Google Scholar 

  24. Yi S-S, Yan J-M, Wulan B-R, Li S-J, Liu K-H, Jiang Q (2017) Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation. Appl Catal B-Environ 200:477–483

    CAS  Google Scholar 

  25. Jiang J, Yu J, Cao S (2016) Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light. J Colloid Interface Sci 461:56–63

    CAS  Google Scholar 

  26. Wang M, Shen S, Li L, Tang Z, Yang J (2017) Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J Mater Sci 52:5155–5164. https://doi.org/10.1007/s10853-017-0752-z

    Article  CAS  Google Scholar 

  27. Zhang Z, Wang Z, Cao S-W, Xue C (2013) Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C 117:25939–25947

    CAS  Google Scholar 

  28. Zhang G, Lan Z-A, Lin L, Lin S, Wang X (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066

    CAS  Google Scholar 

  29. Anandan S, Pugazhenthiran N, Selvamani T, Hsieh S-H, Lee G-J, Wu JJ (2012) Investigation on photocatalytic potential of Au-Ta2O5 semiconductor nanoparticle by degrading Methyl Orange in aqueous solution by illuminating with visible light. Catal Sci Technol 2:2502–2507

    CAS  Google Scholar 

  30. Cao SW, Jiang J, Zhu BC, Yu JG (2016) Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys Chem Chem Phys 18:19457–19463

    CAS  Google Scholar 

  31. Qi LF, Cheng B, Yu JG, Ho WK (2016) High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature. J Hazard Mater 301:522–530

    CAS  Google Scholar 

  32. Wang Z-L, Yan J-M, Wang H-L, Ping Y, Jiang Q (2013) Au@Pd core-shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. J Mater Chem A 1:12721–12725

    CAS  Google Scholar 

  33. Liu Q, Chen TX, Guo YR, Zhang ZG, Fang XM (2016) Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/OD composites for efficient photocatalytic H2 evolution. Appl Catal B-Environ 193:248–258

    CAS  Google Scholar 

  34. Xu Z, Zhuang C, Zou Z, Wang J, Xu X, Peng T (2017) Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res 10:2193–2209

    CAS  Google Scholar 

  35. Wang F, Chen P, Feng Y, Xie Z, Liu Y, Su Y, Zhang Q, Wang Y, Yao K, Lv W, Liu G (2017) Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl Catal B-Environ 207:103–113

    CAS  Google Scholar 

  36. Yang X, Chen Z, Xu J, Tang H, Chen K, Jiang Y (2015) Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Appl Mater Interface 7:15285–15293

    CAS  Google Scholar 

  37. Ou H, Lin L, Zheng Y, Yang P, Fang Y, Wang X (2017) Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv Mater 29:1700008

    Google Scholar 

  38. Xu J, Zhou H, Shi K, Yan R, Tang Y, Liu J, Ye J, Zhang D, Fan T (2017) Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. J Mater Chem A 5:2195–2203

    CAS  Google Scholar 

  39. Shi X, Fujitsuka M, Lou Z, Zhang P, Majima T (2017) In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light. J Mater Chem A 5:9671–9681

    CAS  Google Scholar 

  40. Jin J, Liang Q, Ding C, Li Z, Xu S (2017) Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4 nanosheets with improved photocatalytic activity. J Alloys Compd 691:763–771

    CAS  Google Scholar 

  41. Le S, Jiang T, Li Y, Zhao Q, Li Y, Fang W, Gong M (2017) Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl Catal B-Environ 200:601–610

    CAS  Google Scholar 

  42. Xue Z, Liu F, Jiang J, Wang J, Mu T (2017) Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived gamma-valerolactone: enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO2. Green Chem 19:5041–5045

    CAS  Google Scholar 

  43. Iwase A, Kato H, Kudo A (2013) The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction. Appl Catal B-Environ 136:89–93

    Google Scholar 

  44. Zhao R, Sun X, Jin Y, Han J, Wang L, Liu F (2019) Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J Mater Sci 54:5445–5456. https://doi.org/10.1007/s10853-018-03278-7

    Article  CAS  Google Scholar 

  45. Zhou G, Shen L, Xing Z, Kou X, Duan S, Fan L, Meng H, Xu Q, Zhang X, Li L, Zhao M, Mi J, Li Z (2017) Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. J Colloid Interface Sci 505:1031–1038

    CAS  Google Scholar 

  46. Yan X, Wu Y, Li D, Hu J, Li G, Li P, Jiang H, Zhang W (2018) Synthesis and evolution of alpha-Fe2O3 nanorods for enhanced visible-light-driven photocatalysis. J Mater Sci 53:15850–15858. https://doi.org/10.1007/s10853-018-2751-0

    Article  CAS  Google Scholar 

  47. Meng S, Ning X, Zhang T, Chen S-F, Fu X (2015) What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band-band transfer or a direct Z-scheme? Phys Chem Chem Phys 17:11577–11585

    CAS  Google Scholar 

  48. Boonprakob N, Wetchakun N, Phanichphant S, Waxler D, Sherrell P, Nattestad A, Chen J, Inceesungvorn B (2014) Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J Colloid Interface Sci 417:402–409

    CAS  Google Scholar 

  49. Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/g-C3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B-Environ 201:617–628

    CAS  Google Scholar 

  50. Yu X, Liu G, Li W, An L, Li Z, Liu J, Hu P (2018) Mesocrystalline Ta2O5 nanosheets supported Pd-Pt nanoparticles for efficient photocatalytic hydrogen production. Int J Hydrogen Energ 43:8232–8242

    CAS  Google Scholar 

  51. Chen XF, Wei J, Hou RJ, Liang Y, Xie ZL, Zhu YG, Zhang XW, Wang HT (2016) Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation. Appl Catal B-Environ 188:342–350

    CAS  Google Scholar 

  52. Han Y, Dong X, Siang Z (2019) Synthesis of MnxCd1−xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production. Catal Sci Technol 9:1427–1436

    CAS  Google Scholar 

  53. Guo F, Li M, Ren H, Huang X, Shu K, Shi W, Lu C (2019) Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep Purif Technol 228:115770

    CAS  Google Scholar 

  54. Ye RQ, Fang HB, Zheng YZ, Li N, Wang Y, Tao X (2016) Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interface 8:13879–13889

    CAS  Google Scholar 

  55. Tang Y, Li X, Zhang D, Pu X, Ge B, Huang Y (2019) Noble metal-free ternary MoS2/Zn0.5Cd0.5S/g-C3N4 heterojunction composite for highly efficient photocatalytic H2 production. Mater Res Bull 110:214–222

    Google Scholar 

  56. Hao X, Zhou J, Cui Z, Wang Y, Wang Y, Zou Z (2018) Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl Catal B-Environ 229:41–51

    CAS  Google Scholar 

  57. Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interface 9:12427–12435

    CAS  Google Scholar 

  58. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B-Environ 187:47–58

    CAS  Google Scholar 

  59. Malik R, Tomer VK, Joshi N, Dankwort T, Lin L, Kienle L (2018) Au-TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl Mater Interface 10:34087–34097

    CAS  Google Scholar 

  60. Liu B, Jiang Y, Wang Y, Shang S, Ni Y, Zhang N, Cao M, Hu C (2018) Influence of dimensionality and crystallization on visible-light hydrogen production of Au@TiO2 core-shell photocatalysts based on localized surface plasmon resonance. Catal Sci Technol 8:1094–1103

    CAS  Google Scholar 

  61. Guo S, Li J, Dong S, Wang E (2010) Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle: one-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties. J Phys Chem C 114:15337–15342

    CAS  Google Scholar 

  62. Ding J, Li X, Chen L, Zhang X, Tian X (2018) Photocatalytic hydrogen production over plasmonic AuCu/CaIn2S4 composites with different AuCu atomic arrangements. Appl Catal B-Environ 224:322–329

    CAS  Google Scholar 

  63. Cui Z, Wang W, Zhao C, Chen C, Han M, Wang G, Zhang Y, Zhang H, Zhao H (2018) Spontaneous redox approach to the self-assembly synthesis of Au/CeO2 plasmonic photocatalysts with rich oxygen vacancies for selective photocatalytic conversion of alcohols. ACS Appl Mater Interface 10:31394–31403

    CAS  Google Scholar 

  64. Zada A, Humayun M, Raziq F, Zhang X, Qu Y, Bai L, Qin C, Jing L, Fu H (2016) Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv Energy Mater 6:1601190

    Google Scholar 

  65. Yang J, Mou C-Y (2018) Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Appl Catal B-Environ 231:283–291

    CAS  Google Scholar 

  66. Tan CF, Zing AKSS, Chen Z, Liow CH, Huy TP, Tan HR, Xu Q-H, Ho GW (2018) Inverse stellation of CuAu-ZnO multimetallic-semiconductor nanostartube for plasmon-enhanced photocatalysis. ACS Nano 12:4512–4520

    CAS  Google Scholar 

  67. Samanta S, Martha S, Parida K (2014) Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 6:1453–1462

    CAS  Google Scholar 

  68. Fu Y, Huang T, Jia B, Zhu J, Wang X (2017) Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl Catal B-Environ 202:430–437

    CAS  Google Scholar 

  69. Zhao H, Hu Z, Liu J, Li Y, Wu M, Van Tendeloo G, Su B-L (2018) Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2–Au–CdS photonic crystals. Nano Energy 47:266–274

    CAS  Google Scholar 

  70. Xie H, Zhao Y, Li H, Xu Y, Chen X (2019) 2D BiVO4/g-C3N4 Z-scheme photocatalyst for enhanced overall water splitting. J Mater Sci 54:10836–10845. https://doi.org/10.1007/s10853-019-03664-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Project of Henan province (No. 202102310607, 202102310613, 202102310606), the Program for Innovation Teams in Science and Technology in Universities of Henan Province (No. 20IRTSTHN004), and the Project funded by China Postdoctoral Science Foundation (No. 2019M652526).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Yu or Junwei Zhao.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Huang, J., Jiang, M. et al. Photo-induced synthesis of nanostructured Pt-on-Au/g-C3N4 composites for visible light photocatalytic hydrogen production. J Mater Sci 55, 15574–15587 (2020). https://doi.org/10.1007/s10853-020-05120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05120-5

Navigation