Skip to main content

Advertisement

Log in

Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional carbon-based material is attracting considerable attention in exploiting photocatalyst under visible light for photocatalytic energy conversion and storage field, e.g., photocatalytic H2 production, and photodegradation. Here, WS2/WO3 composites are grown on crystalline graphitic carbon nitride (g-C3N4) nanosheets to form heterostructures using a hydrothermal treatment method. While the composition of WS2/WO3 depends on the preparation conditions, the ratio of WS2/WO3 affects the photocatalytic performance of samples. WS2/g-C3N4 heterostructures prepared with addition of ascorbic acid reveal enhanced photocatalytic activity due to efficient separation of photogenerated charge carriers. In contrast, sample with relatively low-WS2 proportion reveals high-H2 generation performance under visible-light irradiation. Under full solar spectrum irradiation, the average H2 evolution rate of sample is increased by 5.7 times comparing with that under visible-light test condition. The electrochemical performance of WS2/WO3/g-C3N4 heterostructures was studied using g-C3N4 with different crystallinity for comparison. With fixed WS2/WO3/g-C3N4 ratio, crystalline g-C3N4 leads to improved photocatalytic activity of WS2/WO3/g-C3N4 heterostructures. Sample using g-C3N4 with the highest crystallinity (prepared at 750 ℃) has the highest photodegradation rate and photocurrent response rate comparing with the samples prepared using low-crystalline g-C3N4 substrate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, H., Su, Y., Zhao, H.X., Yu, H.T., Chen, S., Zhang, Y.B., Quan, X.: Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environ. Sci. Technol. 48(20), 11984–11990 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. Tay, Q.L., Kanhere, P., Ng, C.F., Chen, S., Chakraborty, S., Huan, A.C.H., Sum, T.C., Ahuja, R., Chen, Z.: Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem. Mater. 27(14), 4930–4933 (2015)

    Article  CAS  Google Scholar 

  3. Che, W., Cheng, W.R., Yao, T., Tang, F.M., Liu, W., Su, H., Huang, Y.Y., Liu, Q.H., Liu, J.K., Hu, F.C., Pan, Z.Y., Sun, Z.H., Wei, S.Q.: Fast photoelectron transfer in (Cring)–C3N4 Plane Heterostructural Nanosheets for overall water splitting. J. Am. Chem. Soc. 139(8), 3021–3026 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Wen, J.Q., Xie, J., Chen, X.B., Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)

    Article  CAS  Google Scholar 

  5. Yan, S.C., Li, Z.S., Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17), 10397–10401 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X.F., Zhang, J.S., Fu, X.Z., Antonietti, M., Wang, X.C.: Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131(33), 11658–11659 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Huang, D.L., Li, Z.H., Zeng, G.M., Zhou, C.Y., Xue, W.J., Gong, X.M., Yan, X.L., Chen, S., Wang, W.J., Cheng, M.: Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl. Catal. B: Environ. 240, 153–173 (2019)

    Article  CAS  Google Scholar 

  8. Liu, Y.M., Wang, J.P., Yang, P.: Photochemical reactions of g-C3N4-based heterostructured composites in Rhodamine B degradation under visible light. RSC Adv. 6(41), 34334–34341 (2016)

    Article  CAS  Google Scholar 

  9. Lakhi, K.S., Park, D.-H., Al-Bahily, K., Cha, W., Viswanathan, B., Choy, J.-H., Vinu, A.: Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem. Soc. Rev. 46(1), 72–101 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z., Yu, X., Zhu, Q.H., Fan, T.T., Wu, Q.L., Zhang, L.Z., Li, J.H., Fang, W.P., Yi, X.D.: Steam engraving optimization of graphitic carbon nitride with enhanced photocatalytic hydrogen evolution. Carbon 139, 189–194 (2018)

    Article  CAS  Google Scholar 

  11. Yu, X., Fan, T.T., Chen, W.W., Chen, Z., Dong, Y.Y., Fan, H.Q., Fang, W.P., Yi, X.D.: Self-hybridized coralloid graphitic carbon nitride deriving from deep eutectic solvent as effective visible light photocatalysts. Carbon 144, 649–658 (2019)

    Article  CAS  Google Scholar 

  12. Yang, C.W., Qin, J.Q., Rajendran, S., Zhang, X.Y., Liu, R.P.: WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater. Chemsuschem 11(23), 4077–4085 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. Ma, Y.N., Li, J., Liu, E.Z., Wan, J., Hu, X.Y., Fan, J.: High efficiency for H2 evolution and NO removal over the Ag nanoparticles bridged g-C3N4 and WS2 heterojunction photocatalysts. Appl. Catal. B: Environ. 219, 467–478 (2017)

    Article  CAS  Google Scholar 

  14. Shi, X.W., Fujitsuka, M., Kim, S., Majima, T.: Faster electron injection and more active sites for efficient photocatalytic H2 evolution in g-C3N4/MoS2 hybrid. Small 14(11), 1703277 (2018)

    Article  CAS  Google Scholar 

  15. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., Kis, A.: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017)

    Article  CAS  Google Scholar 

  16. Li, X., Su, M.Y., Zhu, G.F., Zhang, K.G., Zhang, X., Fan, J.: Fabrication of a novel few-layer WS2/Bi2MoO6 plate-on-plate heterojunction structure with enhanced visible-light photocatalytic activity. Dalton Trans. 47(30), 10046–10056 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Ding, Y., Wang, Y.L., Ni, J., Shi, L., Shi, S., Tang, W.H.: First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Phys. B 406(11), 2254–2260 (2011)

    Article  CAS  Google Scholar 

  18. Albe, K., Klein, A.: Density-functional-theory calculations of electronic band structure of single-crystal and single-layer WS2. Phys. Rev. B 66(7), 073413 (2002)

    Article  CAS  Google Scholar 

  19. Ma, Y.D., Dai, Y., Guo, M., Niu, C.W., Lu, J.B., Huang, B.B.: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13(34), 15546–15553 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V.H., Terrones, H., Terrones, M.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2013)

    Article  PubMed  CAS  Google Scholar 

  21. Wang, T., Zhang, X., Yang, P., Jiang, S.P.: Aligned MoS2 nanosheets vertically on N-doped carbon nanotubes with NiFe alloy for overall water splitting. Inorg. Chem. Front. 7, 3578–3587 (2020)

    Article  CAS  Google Scholar 

  22. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Li, X., Wen, J.Q., Low, J.X., Fang, Y.P., Yu, J.G.: Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 57(1), 70–100 (2014)

    Article  Google Scholar 

  24. Zhang, K., Fujitsuka, M., Du, Y.K., Majima, T.: 2D/2D heterostructured CdS/WS2 with efficient charge separation improving H2 evolution under visible light irradiation. ACS Appl. Mater. Interfaces 10(24), 20458–20466 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Hou, Y.D., Zhu, Y.S., Xu, Y., Wang, X.C.: Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. Appl. Catal. B: Environ. 156–157, 122–127 (2014)

    Article  CAS  Google Scholar 

  26. Maeda, K., Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys Chem. Lett. 1(18), 2655–2661 (2010)

    Article  CAS  Google Scholar 

  27. Akple, M.S., Low, J.X., Wageh, S., Al-Ghamdi, A.A., Yu, J.G., Zhang, J.: Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196–203 (2015)

    Article  CAS  Google Scholar 

  28. Zhang, X., Veder, J.-P., He, S., Jiang, S.P.: Construction of 2D g-C3N4 lateral-like homostructures and their photo- and electro-catalytic activities. Chem. Commun. 55(9), 1233–1236 (2019)

    Article  CAS  Google Scholar 

  29. Lu, C.H., Quan, C.J., Si, K.Y., Xu, X., He, C., Zhao, Q.Y., Zhan, Y.J., Xu, X.L.: Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films. Appl. Surf. Sci. 479, 1161–1168 (2019)

    Article  CAS  Google Scholar 

  30. Zhang, J.S., Grzelczak, M., Hou, Y.D., Maeda, K., Domen, K., Fu, X.Z., Antonietti, M., Wang, X.C.: Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem. Sci. 3(2), 443–446 (2012)

    Article  CAS  Google Scholar 

  31. Di Paola, A., Palmisano, L., Venezia, A.M., Augugliaro, V.: Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders. J. Phys. Chem. B 103(39), 8236–8244 (1999)

    Article  CAS  Google Scholar 

  32. Zhang, G.G., Savateev, A., Zhao, Y.B., Li, L.N., Antonietti, M.: Advancing the n → π* electron transition of carbon nitride nanotubes for H2 photosynthesis. J. Mater. Chem. A 5(25), 12723–12728 (2017)

    Article  CAS  Google Scholar 

  33. Jia, C.C., Zhang, X., Matras-Postolek, K., Huang, B.B., Yang, P.: Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure towards efficient full solar-spectrum photocatalysis. Carbon 139, 415–426 (2018)

    Article  CAS  Google Scholar 

  34. Wu, X.F., Li, H., Su, J.Z., Zhang, J.R., Feng, Y.M., Jia, Y.N., Sun, L.S., Zhang, W.G., Zhang, M., Zhang, C.Y.: Full spectrum responsive In2.77S4/WS2 p-n heterojunction as an efficient photocatalyst for Cr(VI) reduction and tetracycline oxidation. Appl. Surf. Sci. 473, 992–1001 (2019)

    Article  CAS  Google Scholar 

  35. Chen, J.Y., Xiao, X.Y., Wang, Y., Ye, Z.B.: Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity. J. Alloys Compd. 777, 325–334 (2019)

    Article  CAS  Google Scholar 

  36. Yan, Y.X., Yang, H., Yi, Z., Xian, T., Li, R.S., Wang, X.X.: Construction of Ag2S@CaTiO3 heterostructure photocatalysts for enhanced photocatalytic degradation of dyes. Desalin. Water Treat. 170, 349–360 (2019)

    Article  CAS  Google Scholar 

  37. Gao, H.J., Zhao, X.X., Zhang, H.M., Chen, J.F., Wang, S.F., Yang, H.: Construction of 2D/0D/2D Face-to-Face Contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamine B. J. Electron. Mater. 49(9), 5248–5259 (2020)

    Article  CAS  Google Scholar 

  38. Bai, K.F., Cui, Z., Li, E.N., Ding, Y.C., Zheng, J.S., Liu, C., Zheng, Y.P.: Adsorption of gas molecules on group III atoms adsorbed g-C3N4: a first-principles study. Vacuum 175, 109293 (2020)

    Article  CAS  Google Scholar 

  39. Cui, Z., Bai, K.F., Ding, Y.C., Wang, X., Li, E.N., Zheng, J.S.: Janus XSSe/SiC (X = Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts. Physica E 123, 114207 (2020)

    Article  CAS  Google Scholar 

  40. Cui, Z., Ren, K., Zhao, Y.M., Wang, X., Shu, H.B., Yu, J., Tang, W.C., Sun, M.L.: Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides. Appl. Surf. Sci. 492, 513–519 (2019)

    Article  CAS  Google Scholar 

  41. Cui, Z., Wang, X., Ding, Y.C., Li, E.N., Bai, K.F., Zheng, J.S., Liu, T.: Adsorption of CO, NH3, NO, and NO2 on pristine and defective g-GaN: improved gas sensing and functionalization. Appl. Surf. Sci. 530, 147275 (2020)

    Article  CAS  Google Scholar 

  42. Sun, M.L., Chou, J.-P., Hu, A., Schwingenschlögl, U.: Point defects in blue phosphorene. Chem. Mater. 31(19), 8129–8135 (2019)

    Article  CAS  Google Scholar 

  43. Sun, M.L., Schwingenschlögl, U.: B2P6: a two-dimensional anisotropic Janus material with potential in photocatalytic water splitting and metal-ion batteries. Chem. Mater. 32(11), 4795–4800 (2020)

    Article  CAS  Google Scholar 

  44. Han, D.L., Han, Y.J., Li, J., Liu, X.M., Yeung, K.W.K., Zheng, Y.F., Cui, Z.D., Yang, X.J., Liang, Y.Q., Li, Z.Y., Zhu, S.L., Yuan, X.B., Feng, X.B., Yang, C., Wu, S.L.: Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B: Environ. 261, 118248 (2020)

    Article  CAS  Google Scholar 

  45. Li, B., Tan, L., Liu, X.M., Li, Z.Y., Cui, Z.D., Liang, Y.Q., Zhu, S.L., Yang, X.J., Kwok Yeung, K.W., Wu, S.L.: Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. J. Hazard. Mater. 380, 120818 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Wu, B.B., Li, Y., Su, K., Tan, L., Liu, X.M., Cui, Z.D., Yang, X.J., Liang, Y.Q., Li, Z.Y., Zhu, S.L., Yeung, K.W.K., Wu, S.L.: The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. J. Hazard. Mater. 377, 227–236 (2019)

    Article  CAS  PubMed  Google Scholar 

  47. Xie, X.Z., Mao, C.Y., Liu, X.M., Tan, L., Cui, Z.D., Yang, X.J., Zhu, S.L., Li, Z.Y., Yuan, X.B., Zheng, Y.F., Yeung, K.W.K., Chu, P.K., Wu, S.L.: Tuning the Bandgap of photo-sensitive polydopamine/Ag3PO4/Graphene oxide coating for rapid, noninvasive disinfection of implants. ACS Central Sci. 4(6), 724–738 (2018)

    Article  CAS  Google Scholar 

  48. Li, Y., Liu, X.M., Tan, L., Cui, Z.D., Jing, D.D., Yang, X.J., Liang, Y.Q., Li, Z.Y., Zhu, S.L., Zheng, Y.F., Yeung, K.W.K., Zheng, D., Wang, X.B., Wu, S.L.: Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Funct. Mater. 29(20), 1900946 (2019)

    Article  CAS  Google Scholar 

  49. Li, Y., Liu, X.M., Tan, L., Cui, Z.D., Yang, X.J., Zheng, Y.F., Yeung, K.W.K., Chu, P.K., Wu, S.L.: Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 28(30), 1800299 (2018)

    Article  CAS  Google Scholar 

  50. Luo, Y., Li, J., Liu, X.M., Tan, L., Cui, Z.D., Feng, X.B., Yang, X.J., Liang, Y.Q., Li, Z.Y., Zhu, S.L., Zheng, Y.F., Yeung, K.W.K., Yang, C., Wang, X.B., Wu, S.L.: Dual metal-organic framework heterointerface. ACS Central Sci. 5(9), 1591–1601 (2019)

    Article  CAS  Google Scholar 

  51. Xiao, Y., Tao, X., Qiu, G., Dai, Z., Gao, P., Li, B.: Optimal synthesis of a direct Z-scheme photocatalyst with ultrathin W18O49 nanowires on g-C3N4 nanosheets for solar-driven oxidation reactions. J. Colloid Inter. Sci. 550, 99–109 (2019)

    Article  CAS  Google Scholar 

  52. Xiao, Y., He, Z., Wang, R., Tao, X., Li, B.: Synthesis of WO3 nanofibers decorated with BiOCl nanosheets for photocatalytic degradation of organic pollutants under visible light. Colloids Surf. A 580, 123752 (2019)

    Article  CAS  Google Scholar 

  53. Wang, R., Qiu, G., Xiao, Y., Tao, X., Peng, W., Li, B.: Optimal construction of WO3·H2O/Pd/CdS ternary Z-scheme photocatalyst with remarkably enhanced performance for oxidative coupling of benzylamines. J. Catalysis 374, 378–390 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council under the Discovery Scheme (Project No. DP180100731, DP180100568), the projects from the National Natural Science Foundation of China (Grant no. 51772130 and 51972145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Yang or San Ping Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 677 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, P. & Jiang, S.P. Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance. J Nanostruct Chem 11, 367–380 (2021). https://doi.org/10.1007/s40097-020-00373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00373-7

Keywords

Navigation