Skip to main content
Log in

Effect of heat treatment on corrosion of laser-textured aluminum alloy surfaces

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of electrochemical corrosion of aluminum alloy (AlMg6) surfaces with different wettability was analyzed. The surfaces were processed by three different methods, in particular, polishing, laser texturing, the combination of laser texturing and low-temperature heating. After laser processing, the dimple-like texture was formed on the surface, and the wettability significantly enhanced. Low-temperature heating of laser-textured AlMg6 alloy surfaces led to the wettability inversion from strongly hydrophilicity to superhydrophobicity. Microscopic and profilometric methods were used to estimate the surface degradation due to corrosion when aggressive solution droplets (a mixture of NaCl and hydrogen peroxide aqueous solutions) evaporated. The potentiodynamic polarization measurements of AlMg6 alloy surfaces were conducted. The typical modes of corrosion and evaporation of aggressive solution droplets were detected. The kinetics of corrosion was estimated by the behavior of the corrosion area evolution. In addition, when immersing laser-textured sample with strongly hydrophilic properties into aggressive solution, the higher corrosion rate was found in the liquid meniscus region (aggressive mixture / alloy / air interface) compared to the textured site immersed in the mixture. This was explained by convection increasing the rate of reaction products removal and promoting a stronger deviation from the equilibrium state in the aggressive mixture. Experimental results of the potentiodynamic polarization measurements revealed that laser-textured samples exhibit enhanced corrosion protective properties compared to polished samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Vakarelski IU, Chan DYC, Nonoguchi T et al (2009) Assembly of gold nanoparticles into microwire networks induced by drying liquid bridges. Phys Rev Lett 102:100–103. https://doi.org/10.1103/PhysRevLett.102.058303

    Article  CAS  Google Scholar 

  2. Jurewicz I, King AAK, Shanker R et al (2020) Mechanochromic and thermochromic sensors based on graphene infused polymer opals. Adv Funct Mater 2002473:1–12. https://doi.org/10.1002/adfm.202002473

    Article  CAS  Google Scholar 

  3. Burshtein N, Chan ST, Toda-Peters K et al (2019) 3D-printed glass microfluidics for fluid dynamics and rheology. Curr Opin Colloid Interface Sci 43:1–14. https://doi.org/10.1016/j.cocis.2018.12.005

    Article  CAS  Google Scholar 

  4. Guo J, Zeng F, Guo J, Ma X (2020) Preparation and application of microfluidic SERS substrate: challenges and future perspectives. J Mater Sci Technol 37:96–103. https://doi.org/10.1016/j.jmst.2019.06.018

    Article  Google Scholar 

  5. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411. https://doi.org/10.1146/annurev.fluid.36.050802.122124

    Article  Google Scholar 

  6. Kuznetsov GV, Feoktistov DV, Orlova EG et al (2018) Evaporation modes of LiBr, CaCl2, LiCl, NaCl aqueous salt solution droplets on aluminum surface. Int J Heat Mass Transf 126:161–168. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.040

    Article  CAS  Google Scholar 

  7. Ponomarev K, Orlova E, Feoktistov D (2016) Effect of the heat flux density on the evaporation rate of a distilled water drop. EPJ Web Conf 110:7–10. https://doi.org/10.1051/epjconf/201611001060

    Article  CAS  Google Scholar 

  8. Misyura SY (2020) Evaporation of aqueous solutions of LiBr and LiCl salts. Int Commun Heat Mass Transf 117:1–9. https://doi.org/10.1016/j.icheatmasstransfer.2020.104727

  9. Benamati G, Gessi A, Scaddozzo G (2005) Corrosion behaviour of steels and refractory metals in flowing Lead-Bismuth Eutectic at low oxygen activity. J Mater Sci 40:2465–2470. https://doi.org/10.1007/s10853-005-1976-x

    Article  CAS  Google Scholar 

  10. Zhang PX, Yan H, Sun YH (2021) Microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating on 304 stainless steel. J Mater Sci 56:8209–8224. https://doi.org/10.1007/s10853-020-05741-w

    Article  CAS  Google Scholar 

  11. Wang XT, Hou BR (2010) Effect of sulphide pollutants on mild steel corrosion in 3·5% NaCl solutions. Corros Eng Sci Technol 45:57–60. https://doi.org/10.1179/147842209X12476568584188

    Article  CAS  Google Scholar 

  12. Khaksar L, Whelan G, Shirokoff J (2016) Electrochemical and microstructural analysis of FeS films from acidic chemical bath at varying temperatures, pH, and immersion time. Int J Corros 2016:1–9. https://doi.org/10.1155/2016/1025261

  13. Nairn JD, Skennerton SG, Atrens A (2003) Comparative atmospheric corrosion of primary and cold rolled copper in Australia. J Mater Sci 38:995–1005. https://doi.org/10.1023/A:1022337511592

    Article  CAS  Google Scholar 

  14. Tsutsumi Y, Nishikata A, Tsuru T (2007) Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions. Corros Sci 49:1394–1407. https://doi.org/10.1016/j.corsci.2006.08.016

    Article  CAS  Google Scholar 

  15. Dubuisson E, Lavie P, Dalard F et al (2007) Corrosion of galvanised steel under an electrolytic drop. Corros Sci 49:910–919. https://doi.org/10.1016/j.corsci.2006.05.027

    Article  CAS  Google Scholar 

  16. Dubuisson E, Lavie P, Dalard F et al (2006) Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet. Electrochem Commun 8:911–915. https://doi.org/10.1016/j.elecom.2006.03.024

    Article  CAS  Google Scholar 

  17. Zakowski K, Narozny M, Szocinski M, Darowicki K (2014) Influence of water salinity on corrosion risk-the case of the southern Baltic Sea coast. Environ Monit Assess 186:4871–4879. https://doi.org/10.1007/s10661-014-3744-3

    Article  CAS  Google Scholar 

  18. Lv D, Ou J, Xue M, Wang F (2015) Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution. Appl Surf Sci 333:163–169. https://doi.org/10.1016/j.apsusc.2015.02.012

    Article  CAS  Google Scholar 

  19. Cui G, Bi Z, Zhang R et al (2019) A comprehensive review on graphene-based anti-corrosive coatings. Chem Eng J 373:104–121

    Article  CAS  Google Scholar 

  20. Wang D, Bierwagen GP (2009) Sol-gel coatings on metals for corrosion protection. Prog Org Coat 64:327–338

    Article  CAS  Google Scholar 

  21. Yang XF, Tallman DE, Gelling VJ et al (2001) Use of a sol-gel conversion coating for aluminum corrosion protection. Surf Coat Technol 140:44–50. https://doi.org/10.1016/S0257-8972(01)01002-7

    Article  CAS  Google Scholar 

  22. Chen T, Yan W, Hongtao L et al (2017) Facile preparation of superamphiphobic phosphate–Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance. J Mater Sci 52:4675–4688. https://doi.org/10.1007/s10853-016-0710-1

    Article  CAS  Google Scholar 

  23. Zaferani SH, Peikari M, Zaarei D et al (2013) Using silane films to produce an alternative for chromate conversion coatings. Corrosion 69:372–387. https://doi.org/10.5006/0686

    Article  CAS  Google Scholar 

  24. Ma L, Wang J, Zhang Z et al (2021) Preparation of a superhydrophobic TiN/PTFE composite film toward self-cleaning and corrosion protection applications. J Mater Sci 56:1413–1425. https://doi.org/10.1007/s10853-020-05364-1

    Article  CAS  Google Scholar 

  25. Boinovich LB, Gnedenkov SV, Alpysbaeva DA et al (2012) Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers. Corros Sci 55:238–245. https://doi.org/10.1016/j.corsci.2011.10.023

    Article  CAS  Google Scholar 

  26. Ejenstam L, Ovaskainen L, Rodriguez-Meizoso I et al (2013) The effect of superhydrophobic wetting state on corrosion protection-the AKD example. J Colloid Interface Sci 412:56–64. https://doi.org/10.1016/j.jcis.2013.09.006

    Article  CAS  Google Scholar 

  27. Jagdheesh R, Diaz M, Ocaña JL (2016) Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing. RSC Adv 6:72933–72941. https://doi.org/10.1039/c6ra12236a

    Article  CAS  Google Scholar 

  28. Yang H, Gao Y, Frankel GS et al (2020) Robust superhydrophobic surface with reinforced skeletons for corrosion protection. Appl Surf Sci 499:143916. https://doi.org/10.1016/j.apsusc.2019.143916

    Article  CAS  Google Scholar 

  29. Samanta A, Wang Q, Shaw SK, Ding H (2020) Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Mater Des 192:108744. https://doi.org/10.1016/j.matdes.2020.108744

    Article  CAS  Google Scholar 

  30. Samanta A, Huang W, Chaudhry H et al (2020) Design of chemical surface treatment for laser-textured metal alloys to achieve extreme wetting behavior. ACS Appl Mater Interfaces 12:18032–18045. https://doi.org/10.1021/acsami.9b21438

    Article  CAS  Google Scholar 

  31. Liu X, Shen H, Liu J et al (2020) A green, maskless, and universal preparation method for patterned surfaces on various metal substrates. Appl Surf Sci 514:1–10. https://doi.org/10.1016/j.apsusc.2020.145838

  32. Zhang H, Gu D, Dai D et al (2020) Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting. Appl Surf Sci 509:1–11. https://doi.org/10.1016/j.apsusc.2020.145330

  33. Boinovich LB, Emelyanenko AM, Modestov AD et al (2015) Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment. ACS Appl Mater Interfaces 7:19500–19508. https://doi.org/10.1021/acsami.5b06217

    Article  CAS  Google Scholar 

  34. Boinovich LB, Emelyanenko AM, Modestov AD et al (2017) Not simply repel water: the diversified nature of corrosion protection by superhydrophobic coatings. Mendeleev Commun 27:254–256. https://doi.org/10.1016/j.mencom.2017.05.012

    Article  CAS  Google Scholar 

  35. Kuznetsov GV, Orlova EG, Feoktistov DV et al (2020) Droplet spreading and wettability of abrasive processed aluminum alloy surfaces. Met Mater Int 26:46–55. https://doi.org/10.1007/s12540-019-00310-6

    Article  CAS  Google Scholar 

  36. de Lara LR, Jagdheesh R, Ocaña JL (2016) Corrosion resistance of laser patterned ultrahydrophobic aluminium surface. Mater Lett 184:100–103. https://doi.org/10.1016/j.matlet.2016.08.022

    Article  CAS  Google Scholar 

  37. Yue TM, Yan LJ, Chan CP (2006) Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075. Appl Surf Sci 252:5026–5034. https://doi.org/10.1016/j.apsusc.2005.07.052

    Article  CAS  Google Scholar 

  38. Trdan U, Ocaña JL, Grum J (2009) Surface evaluation of laser shock processed aluminium alloy after pitting corrosion attack with optical 3-D metrology method. In 10th international conference of the Slovenian society for non-destructive testing: application of contemporary non-destructive testing in engineering. Ljubljana, pp 251–258

  39. Maier B, Frankel GS (2010) Pitting corrosion of bare stainless steel 304 under chloride solution droplets. J Electrochem Soc 157:302–312. https://doi.org/10.1149/1.3467850

    Article  CAS  Google Scholar 

  40. Li JF, Maier B, Frankel GS (2011) Corrosion of an Al-Mg-Si alloy under MgCl2 solution droplets. Corros Sci 53:2142–2151. https://doi.org/10.1016/j.corsci.2011.02.035

    Article  CAS  Google Scholar 

  41. Braun R (1994) On the Stress corrosion cracking behaviour of aluminium alloy sheet in an aqueous solution of 3% NaCl + 0.3% H2O2. Mater Corros und Korrosion 45:255–263. https://doi.org/10.1002/maco.19940450502

    Article  CAS  Google Scholar 

  42. Kuznetsov GV, Feoktistov DV, Orlova EG et al (2019) Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces. J Colloid Interface Sci 553:557–566. https://doi.org/10.1016/j.jcis.2019.06.059

    Article  CAS  Google Scholar 

  43. Misyura SY, Kuznetsov GV, Feoktistov DV et al (2019) The influence of the surface microtexture on wettability properties and drop evaporation. Surf Coat Technol 375:458–467. https://doi.org/10.1016/j.surfcoat.2019.07.058

    Article  CAS  Google Scholar 

  44. Hoorfar M, Neumann WA (2006) Recent progress in axisymmetric drop shape analysis (ADSA). Adv Colloid Interface Sci 121:25–49

    Article  CAS  Google Scholar 

  45. Bateni A, Susnar SS, Amirfazli A, Neumann AWW (2003) A high-accuracy polynomial fitting approach to determine contact angles. Colloids Surfaces A Physicochem Eng Asp 219:215–231. https://doi.org/10.1016/S0927-7757(03)00053-0

    Article  CAS  Google Scholar 

  46. Boinovich LB, Emelyanenko AM, Modestov AD et al (2016) Corrosion behavior of superhydrophobic aluminum alloy in concentrated potassium halide solutions: when the specific anion effect is manifested. Corros Sci 112:517–527. https://doi.org/10.1016/J.CORSCI.2016.08.019

    Article  CAS  Google Scholar 

  47. Huhtamäki T, Tian X, Korhonen JT, Ras RHAA (2018) Surface-wetting characterization using contact-angle measurements. Nat Protoc 13:1521–1538. https://doi.org/10.1038/s41596-018-0003-z

    Article  CAS  Google Scholar 

  48. Yang Z, Liu X, Tian Y (2019) Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J Colloid Interface Sci 533:268–277. https://doi.org/10.1016/j.jcis.2018.08.082

    Article  CAS  Google Scholar 

  49. Boinovich LB, Emelyanenko AM, Emelyanenko KA et al (2016) Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard. Appl Surf Sci 379:111–113. https://doi.org/10.1016/j.apsusc.2016.04.056

    Article  CAS  Google Scholar 

  50. Kuznetsov GV, Feoktistov DV, Orlova EG et al (2019) Unification of the textures formed on aluminum after laser treatment. Appl Surf Sci 469:974–982. https://doi.org/10.1016/J.APSUSC.2018.11.046

    Article  CAS  Google Scholar 

  51. Kuznetsov GV, Feoktistov DV, Orlova EG et al (2020) Dynamic characteristics of water spreading over laser-textured aluminum alloy surfaces. Colloids Surfaces A Physicochem Eng Asp 603:1–11. https://doi.org/10.1016/j.colsurfa.2020.125253

  52. Chun DM, Ngo CV, Lee KM (2016) Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing. CIRP Ann Manuf Technol 65:519–522. https://doi.org/10.1016/j.cirp.2016.04.019

  53. Lou D, Mei S, Wang B et al (2021) Effect of stabilizing heat treatment on condensation heat transfer performance of laser micro-/nano-textured copper surface. J Mater Sci 56:3981–3994. https://doi.org/10.1007/s10853-020-05454-0

    Article  CAS  Google Scholar 

  54. Ngo C-V, Chun D-M (2018) Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces. Adv Eng Mater 20:1–11. https://doi.org/10.1002/adem.201701086

  55. Carle F, Semenov S, Medale M, Brutin D (2016) Contribution of convective transport to evaporation of sessile droplets: empirical model. Int J Therm Sci 101:35–47. https://doi.org/10.1016/j.ijthermalsci.2015.10.012

    Article  CAS  Google Scholar 

  56. Hu H, Larson RG (2005) Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21:3972–3980. https://doi.org/10.1021/la0475270

    Article  CAS  Google Scholar 

  57. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094. https://doi.org/10.1021/jp0609232

    Article  CAS  Google Scholar 

  58. Evertsson J, Bertram F, Zhang F et al (2015) The thickness of native oxides on aluminum alloys and single crystals. Appl Surf Sci 349:826–832. https://doi.org/10.1016/j.apsusc.2015.05.043

    Article  CAS  Google Scholar 

  59. Revie RW, Uhlig HH (2008) Corrosion and corrosion control. Wiley, Hoboken

    Book  Google Scholar 

  60. Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19:8343–8348. https://doi.org/10.1021/la0344682

    Article  CAS  Google Scholar 

  61. Xu X, Luo J (2007) Marangoni flow in an evaporating water droplet. Appl Phys Lett 91:124102. https://doi.org/10.1063/1.2789402

    Article  CAS  Google Scholar 

  62. Misyura SY, Volkov RS, Filatova AS (2018) Interaction of two drops at different temperatures: the role of thermocapillary convection and surfactant. Colloids Surfaces A 559:275–283. https://doi.org/10.1016/j.colsurfa.2018.09.063

    Article  CAS  Google Scholar 

  63. Strizhak PA, Volkov RS, Misyura SY et al (2018) The role of convection in gas and liquid phases at droplet evaporation. Int J Therm Sci 134:421–439. https://doi.org/10.1016/j.ijthermalsci.2018.08.031

    Article  CAS  Google Scholar 

  64. Kuznetsov GV, Misyura SY, Volkov RS, Morozov VS (2019) Marangoni flow and free convection during crystallization of a salt solution droplet. Colloids Surfaces A Physicochem Eng Asp 572:37–46. https://doi.org/10.1016/j.colsurfa.2019.03.051

    Article  CAS  Google Scholar 

  65. Schmitz C (2006) Handbook of aluminium recycling. Vulkan-Verlag GmbH, Esswn

    Google Scholar 

  66. Didem Ö, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects Topogr Length Scales Wettability. https://doi.org/10.1021/LA000598O

    Article  Google Scholar 

  67. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2:457–460. https://doi.org/10.1038/nmat924

    Article  CAS  Google Scholar 

  68. Johnson RE, Dettre RH (1964) Study of an idealized rough surface. In: Gould RF (ed) Contact angle, wettability, and adhesion. American Chemical Society, Washington, DC, pp 112–135

    Chapter  Google Scholar 

Download references

Acknowledgements

The research is funded by Ministry of Science and Higher Education of Russian Federation as part of World-Class Research Centers program “Advanced Digital Technologies” (contract No. 075-15-2020-903 dated 11.16.2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Misyura.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y., Feoktistov, D.V., Morozov, V.S. et al. Effect of heat treatment on corrosion of laser-textured aluminum alloy surfaces. J Mater Sci 56, 12845–12863 (2021). https://doi.org/10.1007/s10853-021-06092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06092-w

Navigation