Skip to main content
Log in

Temperature-dependent light upconversion and thermometric properties of Er3+/Yb3+-codoped SrMoO4 sintered ceramics

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of Sr1−x−yErxYbyMoO4 phosphor compositions codoped with Er3+ (x = 1 mol%) and varying Yb3+ (y = 0–9 mol%) dopants have been evaluated for luminescence-based thermometry. Sintered ceramics exhibit enhanced grain growth at an optimum Yb3+ content (y = 0.03) and exhibit improved upconversion luminescence and a relatively better thermometric performance over the phosphors in the powder form. Strong upconversion (UC) luminescence at ~ 529, ~ 552, and ~ 662 nm assisted by a 2-photon process, cooperative luminescence from Yb3+ ion pair at 495 nm, and weak UC emissions at ~ 380 and ~ 410 nm due to 3-photon process are identified. Luminescence quenching is observed in all the UC emission bands for Yb3+ content y > 3 mol%. Sensitization from Yb3+ to Er3+ and Yb3+–(MoO4)2− dimer to Er3+ ions results in selective enhancement of the green emission. Variation of UC emission intensity with increasing dopant concentration is analyzed using Dexter’s energy transfer formula, which supports the dipole–dipole interaction between Yb3+ and Er3+ ions. Changes in fluorescence intensity ratio (I529/I552) with temperature reveal the potential usefulness of the optimized Sr0.96Er0.01Yb0.03MoO4 phosphor composition in the ceramic form for non-contact optical thermometry and exhibits good repeatability for temperature sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Runowski M, Bartkowiak A, Majewska M, Martin IR, Lis S (2018) Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+-optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. J Lumin 201:104–109. https://doi.org/10.1016/j.jlumin.2018.04.040

    Article  CAS  Google Scholar 

  2. Sinha S, Mahata MK, Swart HC, Kumar A, Kumar K (2017) Enhancement of upconversion, temperature sensing and cathodoluminescence in the K+/Na+ compensated CaMoO4:Er3+/Yb3+ nanophosphor. New J Chem 41:5362–5372. https://doi.org/10.1039/c7nj00086c

    Article  CAS  Google Scholar 

  3. Hernández-Rodriguez MA, Lozano-Gorrín AD, Lavín V, Rodríguez-Mendoza UR, Martin IR, Manjón FJ (2018) Analysis of the upconversion emission of yttrium orthoaluminate nano-perovskite co-doped with Er3+/Yb3+ ions for thermal sensing applications. J Lumin 202:316–321. https://doi.org/10.1016/j.jlumin.2018.05.078

    Article  CAS  Google Scholar 

  4. Lim CS, Aleksandrovsky A, Molokeev M, Oreshonkov A, Atuchin V (2015) Microwave sol-gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4: Er3+/Yb3+ phosphors with incommensurately modulated structure. J Solid State Chem 228:160–166. https://doi.org/10.1016/j.jssc.2015.04.032

    Article  CAS  Google Scholar 

  5. Savchuk OA, Carvajal JJ, Brites CDS, Carlos LD, Aguilo M, Diaz F (2018) Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles. Nanoscale 10:6602–6610. https://doi.org/10.1039/c7nr08758f

    Article  CAS  Google Scholar 

  6. Wang X, Liu Q, Bu Y, Liu CS, Liu T, Yan X (2015) Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv 5:86219–86236. https://doi.org/10.1039/c5ra16986k

    Article  CAS  Google Scholar 

  7. Senapati S, Nanda KK (2017) Red emitting Eu: ZnO nanorods for highly sensitive fluorescence intensity ratio based optical thermometry. J Mater Chem C 5:1074–1082. https://doi.org/10.1039/c6tc04296a

    Article  CAS  Google Scholar 

  8. Zhao Y, Wang X, Zhang Y, Li Y, Yao X (2020) Optical temperature sensing of up-conversion luminescent materials: fundamentals and progress. J Alloys Compd 817:152691. https://doi.org/10.1016/j.jallcom.2019.152691

    Article  CAS  Google Scholar 

  9. Du P, Luo L, Yu JS (2018) Energy back transfer induced colour controllable upconversion emissions in La2MoO6:Er3+/Yb3+ nanocrystals for versatile applications. Part Part Syst Char. https://doi.org/10.1002/ppsc.201700416

    Article  Google Scholar 

  10. Zhang J, Hao Z, Li J, Zhang X, Luo Y, Pan G (2015) Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+-Yb3+ system. Light Sci Appl 4:e239. https://doi.org/10.1038/lsa.2015.12

    Article  CAS  Google Scholar 

  11. Pandey A, Rai VK, Kumar V, Kumar V, Swart HC (2015) Upconversion based temperature sensing ability of Er3+-Yb3+codoped SrWO4: an optical heating phosphor. Sens Actuators B Chem 209:352–358. https://doi.org/10.1016/j.snb.2014.11.126

    Article  CAS  Google Scholar 

  12. Du P, Luo L, Yu JS (2015) Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor. Curr Appl Phys 15:1576–1579. https://doi.org/10.1016/j.cap.2015.09.013

    Article  Google Scholar 

  13. Zhang K, Tong L, Ma Y, Wang J, Xia Z, Han Y (2019) Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions. J Alloys Compd 781:467–472. https://doi.org/10.1016/j.jallcom.2018.12.147

    Article  CAS  Google Scholar 

  14. Chung JH, Ryu JH, Eun JW, Lee JH, Lee SY, Heo TH, Choi BG, Shim KB (2012) Green upconversion luminescence from poly-crystalline Yb3+, Er3+ Co-doped CaMoO4. J Alloys Compd 522:30–34. https://doi.org/10.1016/j.jallcom.2012.01.059

    Article  CAS  Google Scholar 

  15. Zhuang R, Wang G (2016) Sequential energy transfer up-conversion process in Yb3+/Er3+: SrMoO4 crystal. Opt Express 24:7543–7557. https://doi.org/10.1364/oe.24.007543

    Article  CAS  Google Scholar 

  16. Li D, Huang Z, Nie Z, Zhang L, Bai Y, Zhang X, Song Y, Wang Y (2015) Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer. J Alloys Compd 650:799–804. https://doi.org/10.1016/j.jallcom.2015.07.005

    Article  CAS  Google Scholar 

  17. Li D, Wang Y, Zhang X, Shi G, Liu G, Song Y (2013) White upconversion emission in Yb3+/Tm3+/Ho3+ doped SrMoO4 nanocrystals by high excited state energy transfer. J Alloys Compd 550:509–513. https://doi.org/10.1016/j.jallcom.2012.10.142

    Article  CAS  Google Scholar 

  18. Sun W, Chen Z, Zhou J, Li D, Huang Z, Jin X, Zhang Q, Li F, Li Q (2016) Ytterbium-erbium ion doped strontium molybdate (SrMoO4): synthesis, characterization, photophysical properties and application in solar cells. Phys Chem Chem Phys 18:33320–33328. https://doi.org/10.1039/c6cp06571f

    Article  CAS  Google Scholar 

  19. Lim CS (2012) Cyclic MAM synthesis and UC photoluminescence of SrMoO4:Er3+ /Yb3+ nano-particles. J Ceram Process Res 13:565–570

    Google Scholar 

  20. Huang F, Gao Y, Zhou J, Xu J, Wang Y (2015) Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing. J Alloys Compd 639:325–329. https://doi.org/10.1016/j.jallcom.2015.02.228

    Article  CAS  Google Scholar 

  21. Cheng X, Yang K, Wang J, Yang L, Cheng X (2016) Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material. Opt Mater 58:449–453. https://doi.org/10.1016/j.optmat.2016.06.029

    Article  CAS  Google Scholar 

  22. Kaewnuam E, Wantana N, Saikaew S, Kaewkhao J (2020) The luminescence, optical, and structural properties of SrMoO4:Ce3+ phosphor for photonics material applications. J Met Mater Miner 30:73–79. https://doi.org/10.14456/jmmm.2020.8

    Article  CAS  Google Scholar 

  23. Wang S, Zhang H, Wang T, Lv H, Zou X, Wei Y, Hu W, Su C (2020) Synthesis and luminescence properties of Sm3+ doped molybdate glass ceramic. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.153822

    Article  Google Scholar 

  24. Soni AK, Rai VK (2017) Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating. Chem Phys Lett 667:226–232. https://doi.org/10.1016/j.cplett.2016.12.002

    Article  CAS  Google Scholar 

  25. Zhang H, Zhao S, Wang X, Ren X, Ye J, Huang L, Xu S (2019) The enhanced photoluminescence and temperature sensing performance in rare earth doped SrMoO4 phosphors by aliovalent doping: from material design to device applications. J Mat Chem C. https://doi.org/10.1039/c9tc04965g

    Article  Google Scholar 

  26. Hao Y, Lv S, Ma Z, Qiu J (2018) Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry. RSC Adv 8:12165–12172. https://doi.org/10.1039/C8RA01245H

    Article  CAS  Google Scholar 

  27. Yadav RS, Dhoble SJ, Rai SB (2018) Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi3+ doping. New J Chem 42:7272–7282

    Article  CAS  Google Scholar 

  28. Yadav RS, Kumar D, Singh AK, Ekta R, Rai SB (2018) Effect of Bi3+ ion on up-conversion -based induced optical heating and temperature sensing characteristics in the Er3+/Yb3+ co-doped La2O3 nano-phosphor. RSC Adv 8:34699–34711

    Article  CAS  Google Scholar 

  29. Cates SL, Cates EL, Cho M, Kim JH (2014) Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics. Environ Sci Technol 48:2290–2297. https://doi.org/10.1021/es405229p

    Article  CAS  Google Scholar 

  30. Zambonini F, Levi GR (1925) Richerche sull’isomor- fismo dei molibdati dei metalli delle terre rare con quello del calcio, dello stronzio, del bario e del piombo. II. Struttura dei molibdati di Ca, Sr, Ba, Pb, Rend, accad. Lincei 2:225–230

    Google Scholar 

  31. Swanson HE, Gilfrich NT, Marlene I (1957) Standard X-ray Diffraction Powder Patterns. Cook National Bureau of Standards Circular 539:50–51

  32. Barrett CS, Massalski TB (1966) Structure of metals: crystallographic methods, principles, and data, 3rd edn. McGraw-Hill series in materials science and engineering. McGraw-Hill, New York

    Google Scholar 

  33. Yang J, Fei Y, Hu X, Greenberg E, Prakapenka VB (2019) Effect of carbon on the volume of solid iron at high pressure: implications for carbon substitution in iron structures and carbon content in the Earth’s inner core. Minerals. https://doi.org/10.3390/min9120720

    Article  Google Scholar 

  34. Schaudel B, Goldner P, Prassas M, Auzel F (2000) Cooperative luminescence as a probe of clustering in Yb3+ doped glasses. J Alloys Compd 300:443–449. https://doi.org/10.1016/S0925-8388(99)00760-4

    Article  Google Scholar 

  35. Nakazawa E, Shinoya S (1970) Cooperative luminescence in YbPO4. Phys Rev Lett 25:1710–1712. https://doi.org/10.1103/PhysRevLett.25.1710

    Article  CAS  Google Scholar 

  36. Guan Y, Huang Y, Jin Seo H (2012) The blue cooperative up-conversion luminescence in Ca9Yb[VO4]7 ceramic. Mater Lett 89(2012):126–128. https://doi.org/10.1016/j.matlet.2012.08.056

    Article  CAS  Google Scholar 

  37. Qin WP, Liu ZY, Sin CN, Wu CF, Qin GS, Chen Z, Zheng KZ (2014) Multi-ion cooperative processes in Yb3+ clusters. Light Sci Appl 3:e193. https://doi.org/10.1038/lsa.2014.74

    Article  CAS  Google Scholar 

  38. Dong H, Sun LD, Yan CH (2013) Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5:5703–5714. https://doi.org/10.1039/c3nr34069d

    Article  CAS  Google Scholar 

  39. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173. https://doi.org/10.1021/cr020357g

    Article  CAS  Google Scholar 

  40. Lim CS, Aleksandrovsky AS, Atuchin V, v., Molokeev M S, Oreshonkov A S, (2020) Microwave sol-gel synthesis, microstructural and spectroscopic properties of scheelite-type ternary molybdate upconversion phosphor NaPbLa(MoO4)3:Er3+/Yb3+. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152095

    Article  Google Scholar 

  41. Bokolia R, Thakur OP, Rai VK, Sharma SK, Sreenivas K (2016) Electrical properties and light up conversion effects in Bi3.79Er0.03Yb0.18Ti3-xWxO12 ferroelectric ceramics. Ceram Int 42:5718–5730. https://doi.org/10.1016/j.ceramint.2015.12.103

    Article  CAS  Google Scholar 

  42. Blasse G, Grabmaier B C (1994), A General Introduction to Luminescent materials. In: Luminescent Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79017-1_1

  43. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850. https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  44. Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070. https://doi.org/10.1063/1.1740265

    Article  CAS  Google Scholar 

  45. Tu L, Liu X, Wu F, Zhang H (2015) Excitation energy migration dynamics in upconversion nanomaterials. Chem Soc Rev 44:1331–1345. https://doi.org/10.1039/c4cs00168k

    Article  CAS  Google Scholar 

  46. Sinha S, Mahata MK, Kumar K, Tiwari SP, Rai VK (2017) Dualistic temperature sensing in Er3 +/Yb3 + doped CaMoO4 upconversion phosphor, spectrochim. Acta A 173:369–375. https://doi.org/10.1016/j.saa.2016.09.039

    Article  CAS  Google Scholar 

  47. Singh BP, Parchur AK, Singh RK, Ansari AA, Singh P, Rai SB (2013) Structural and up-conversion properties of Er 3+ and Yb3+ co-doped Y2 Ti2 O7 phosphors. Phys Chem Chem Phys 15:3480–3489. https://doi.org/10.1039/c2cp44195k

    Article  CAS  Google Scholar 

  48. Dong H, Sun LD, Yan CH (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44(2015):1608–1634. https://doi.org/10.1039/c4cs00188e

    Article  CAS  Google Scholar 

  49. Mukhopadhyay L, Rai VK, Bokolia R, Sreenivas K (2017) 980 nm excited Er3+/Yb3+/Li+/Ba2+: NaZnPO4 upconverting phosphors in optical thermometry. J Lumin 187:368–377. https://doi.org/10.1016/j.jlumin.2017.03.035

    Article  CAS  Google Scholar 

  50. He YY, Liu XL, Cao BS, Feng ZQ, Dong B (2013) A general approach for selective enhancement of green upconversion emissions in Er3+ doped oxides by Yb3+-MoO42- dimer sensitizing. J Sol-Gel Sci Technol 66:312–316. https://doi.org/10.1007/s10971-013-3010-0

    Article  CAS  Google Scholar 

  51. Dong B, Cao B, He Y, Liu Z, Li Z, Feng Z (2012) Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides Adv. Mater 24:1987–1993. https://doi.org/10.1002/adma.201200431

    Article  CAS  Google Scholar 

  52. Shandilya A, Yadav RS, Gupta AK, Sreenivas K (2021) Effects of Yb3+ ion doping on lattice distortion, optical absorption and light upconversion in Er3+/Yb3+ co-doped SrMoO4 ceramics. Matr Chem Phys 264:124441. https://doi.org/10.1016/j.matchemphys.2021.124441

    Article  CAS  Google Scholar 

  53. Pollnau M, Gamelin DR, Lü SR, Gü HU, Hehlen MP (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61:3337–3346. https://doi.org/10.1103/PhysRevB.61.3337

    Article  CAS  Google Scholar 

  54. Desirena H, de La Rosa E, Díaz-Torres LA, Kumar GA (2006) Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses. Opt Mater 28:560–568. https://doi.org/10.1016/j.optmat.2005.04.002

    Article  CAS  Google Scholar 

  55. Kang X, Lü W, Wang H, Ling D (2019) Multicolor-tunable up-conversion emissions of Yb3+, Er3+/Ho3+ co-doped Ba3Lu2Zn5O11: crystal structure, luminescence and energy transfer properties. Dalton Trans 48(2019):2917–2925. https://doi.org/10.1039/C8DT04577A

    Article  CAS  Google Scholar 

  56. Wade SA, Collins SF, Baxter GW (2003) Fluorescence intensity ratio technique for optical fibre point temperature sensing. J Appl Phys 94:4743–4756. https://doi.org/10.1063/1.1606526

    Article  CAS  Google Scholar 

  57. Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2012) Thermometry at the nanoscale. Nanoscale 4:4799–4829. https://doi.org/10.1039/c2nr30663h

    Article  CAS  Google Scholar 

  58. Bokolia R, Mondal M, Rai VK, Sreenivas K (2017) Enhanced infrared-to-visible up-conversion emission and temperature sensitivity in (Er3+, Yb3+, and W6+) tri-doped Bi4Ti3O12 ferroelectric oxide. J Appl Phys 121:084101. https://doi.org/10.1063/1.4977006

    Article  CAS  Google Scholar 

  59. Ran W, Noh HM, Park SH, Choi BC, Kim JH, Jeong JH, Shi J (2019) Infrared excited Er3+ /Yb3+ codoped NaLaMgWO6 phosphors with intense green up-conversion luminescence and excellent temperature sensing performance. Dalton Trans 48:11382–11390. https://doi.org/10.1039/c9dt01970g

    Article  CAS  Google Scholar 

  60. Chai X, Li J, Zhang Y, Wang X, Li Y, Yao X (2016) Bright dual-mode green emission and temperature sensing properties in Er3+/Yb3+ co-doped MgWO4 phosphor. RSC Adv 6:64072. https://doi.org/10.1039/c6ra09656e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University Science Instrumentation Centre at the University of Delhi. One of the authors (Ankur Shandilya) is thankful to the Department of Science and Technology, Ministry of Science and Technology, India (DST), for providing financial assistance through the Inspire Junior Research Fellowship (IF160397) during (2016-2018) and up-gradation to senior research fellowship (SRF) for the period (2019-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreenivas.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandilya, A., Yadav, R.S., Gupta, A.K. et al. Temperature-dependent light upconversion and thermometric properties of Er3+/Yb3+-codoped SrMoO4 sintered ceramics. J Mater Sci 56, 12716–12731 (2021). https://doi.org/10.1007/s10853-021-06078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06078-8

Navigation