Skip to main content
Log in

Enhanced temperature sensing performance of Er3+, Yb3+: PLZT ceramic based on emissions of Stark sublevels

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the temperature sensing behaviors of emissions of Stark sublevels in Er3+/Yb3+ codoped lead lanthanum zirconate titanate (PLZT) transparent ceramic were examined. Based on the temperature-dependent upconversion fluorescence spectra excited by 980 nm, the emission intensities of the Stark sublevels 2H11/2(1, 2), 4S3/2(1, 2), and 4F9/2(1, 2, 3) were obtained upon increasing the temperature from 160 to 320 K. All the transitions present strong temperature dependence under the competitive effects of thermal excitation and nonradiative relaxation. The optical temperature sensing properties of 2H11/2/4S3/2(1), 2H11/2/4S3/2(2), 2H11/2/4F9/2(1), 2H11/2/4F9/2(2), and 2H11/2/4F9/2(3) were investigated using the fluorescence intensity ratio (FIR) technique. The largest absolute sensitivity Sa of 142.4 × 10–4 K−1 was obtained based on the FIRs of 2H11/2/4F9/2(1) at 320 K, which is approximately 26 times larger than that of traditionally used thermal coupled levels 2H11/2/4S3/2 in the considered sample. In contrast, the maximum relative sensitivity Sr was 2.21% K−1 at 203 K. A comparison of these results with those of other Er3+/Yb3+ codoped materials reveals that Er3+/Yb3+: PLZT ceramics are a promising thermometer material at low temperatures. Applying FIRs based on the photoluminescence of Stark sublevels is a practical approach to achieving greater thermometric efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All relevant data are within the paper and the data are available from the corresponding author on reasonable request.

References

  1. M.W. Khalid, C. Whitehouse, R. Ahmed, M.U. Hassan, H. Butt, Adv. Opt. Mater. 7, 1801013 (2019)

    Google Scholar 

  2. X. Tian, T. Zhou, J. Wen, Z. Chen, C. Ji, Z. Huang, S. Lian, X. Liu, H. Peng, C. Li, J. Li, J. Hu, Y. Peng, Mater. Res. Bull. 129, 110882 (2020)

    Google Scholar 

  3. J.R. Macairan, D.B. Jaunky, A. Piekny, R. Naccache, Nanoscale Adv. 1, 105–113 (2019)

    ADS  Google Scholar 

  4. J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Chem. Rev. 115, 395–465 (2015)

    Google Scholar 

  5. M.M.A. Mazza, F.M. Raymo, J. Mater. Chem. C 7, 5333 (2019)

    Google Scholar 

  6. F.F. Hu, Y.C. Jiang, Y.H. Chen, R.F. Wei, H. Guo, C.K. Duan, J. Alloys Compd. 867, 159160 (2021)

    Google Scholar 

  7. Y.H. Chen, J. Chen, Y. Tong, W.N. Zhang, X.S. Peng, H. Guo, D. Huang, J. Rare Earths 39, 1512 (2021)

    Google Scholar 

  8. H. Zhang, S. Zhao, X. Wang, X. Ren et al., J. Mater. Chem. C 7, 15007–15013 (2019)

    Google Scholar 

  9. S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo et al., Nanoscale Adv. 6, 5675–5679 (2014)

    ADS  Google Scholar 

  10. X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao et al., ACS Appl. Mater. Interfaces 7, 20813–20819 (2015)

    Google Scholar 

  11. X. Yang, S.P. Lin, D.C. Ma, S.W. Long et al., Ceram. Int. 46, 1178–1182 (2020)

    Google Scholar 

  12. E. Maurice, G. Monnom, D. Ostrowsky, G. Baxter, J. Light. Technol. 13, 1349–1353 (1995)

    ADS  Google Scholar 

  13. A. Pandey, V. K. Rai, in Rare earth doped materials for temperature sensors, ed. by Y. Dwivedi, S. B. Rai, J. P. Singh (Nova Publisher, USA, Chapter 11, 2014), pp. 279–292

  14. H. Lu, R. Meng, H. Hao, Y. Bai, Y. Gao, Y. Song et al., RSC Adv. 6, 57667–57671 (2016)

    ADS  Google Scholar 

  15. L. Xu, J. Liu, L. Pei, Y. Xu, Z. Xia, J. Mater. Chem. C 7, 6112–6119 (2019)

    Google Scholar 

  16. Y. Zhao, X.S. Wang, R. Hu, Y. Zhang, Y.X. Li, X. Yao, Mater. Res. Bull. 131, 110959 (2020)

    Google Scholar 

  17. X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, X.H. Yan, RSC Adv. 5, 86219–86236 (2015)

    ADS  Google Scholar 

  18. Y. Zhao, X. Wang, Y. Zhang, Y. Li, X. Yao, J. Alloys Compd. 817, 152691 (2020)

    Google Scholar 

  19. A.N. Bashkatov et al., J. Phys. D: Appl. Phys. 38, 2543 (2005)

    ADS  Google Scholar 

  20. Y. Zhang, S. Xu, X. Li, J. Zhang, J. Sun, H. Xia, R. Hua, B. Chen, Mater. Res. Bull. 114, 148–155 (2019)

    Google Scholar 

  21. X. Zhu, J. Li, X. Qiu, W. Feng, F. Li, Nat. Commun. 9, 2176 (2018)

    ADS  Google Scholar 

  22. C. Duan, L. Liang, L. Li, R. Zhang, Z. Xu, J. Mater. Chem. B 6, 192–209 (2018)

    Google Scholar 

  23. Y. Cheng, Y. Gao, H. Lin, F. Huang, Y. Wang, J. Mater. Chem. C 6, 7462–7478 (2018)

    Google Scholar 

  24. Z. Feng, L. Lin, Z. Wang, Z. Zheng, Opt. Commun. 399, 40–44 (2017)

    ADS  Google Scholar 

  25. O.A. Savchuk, J.J. Carvajal, M.C. Pujol et al., J. Phys. Chem. C 119, 18546–18558 (2015)

    Google Scholar 

  26. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati et al., ACS Nano 5, 8665–8671 (2011)

    Google Scholar 

  27. A. Dwivedi, K. Mishra, S. Rai, J. Phys. D Appl. Phys. 48, 435103 (2015)

    ADS  Google Scholar 

  28. S. Liu, H. Ming, J. Cui, S. Liu, W. You et al., J. Phys. Chem. C 122, 16289–16303 (2018)

    Google Scholar 

  29. A.S.S. De Camargo, L.A.O. De Nunes, I.A. Santos et al., J. Appl. Phys. 95, 2135 (2004)

    ADS  Google Scholar 

  30. G.H. Haertling, Ferroelectrics 75, 25–55 (1987)

    ADS  Google Scholar 

  31. Z. Zheng, X. Li, J. Liu, Z. Feng, B. Li, J. Yang, K. Li, H. Jiang, X. Chen, J. Xie, H. Ming, Phys. B 403, 44–49 (2008)

    ADS  Google Scholar 

  32. J.H. Yang, L. Wen, S.X. Dai, L.L. Hu, Z.H. Jiang, Chin. Opt. Lett. 1, 611 (2003)

    ADS  Google Scholar 

  33. W.Q. Shi, M. Bass, M. Birnbaum, J. Opt. Soc. Am. B. 7, 1456–1462 (1990)

    ADS  Google Scholar 

  34. Z. Feng, L. Lin, Z. Wang, Z. Zheng, J. Lumin. 221, 117005 (2020)

    Google Scholar 

  35. X. Yang, Z. Fu, Y. Yang, ZhWu. Ch Zhang, T.Q. Sheng, J. Am. Ceram. Soc. 98, 2595–2600 (2015)

    Google Scholar 

  36. F. Huang, Y. Gao, J.C. Zhou, J. Xu, Y.S. Wang, J. Alloys Compd. 639, 325–329 (2015)

    Google Scholar 

  37. B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, C. Li, Appl. Phys. Lett. 90, 181117 (2007)

    ADS  Google Scholar 

  38. S.K. Singh, K. Kumar, S.B. Rai, Sens. Actuators, A 149, 16–20 (2009)

    Google Scholar 

  39. S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, M. Yin, Opt. Commun. 291, 138–142 (2013)

    ADS  Google Scholar 

  40. G. Liu, L. Fu, Z. Gao, X. Yang, Z. Fu, Z. Wang, Y. Yang, RSC Adv. 5(2015), 51820–51825 (1827)

    ADS  Google Scholar 

  41. A. Pandey, V.K. Rai, V. Kumar et al., Sens. Actuators B Chem 209, 352–358 (2015)

    Google Scholar 

  42. J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, M. Yin, J. Am. Ceram. Soc. 100, 2108–2115 (2017)

    Google Scholar 

  43. X. Liu, R. Lei, F. Huang, D. Deng, H. Wang, S. Zhao, S. Xu, J. Lumin. 210, 119–127 (2019)

    Google Scholar 

  44. G. Xiang, X. Liu, W. Liu, B. Wang, Z. Liu et al., J. Am. Ceram. Soc. 103, 2540–2547 (2020)

    Google Scholar 

  45. T. Zheng, L. Zhou, X. Qiu, D. Yang, M. Runowski et al., J. Lumin. 227, 117517 (2020)

    Google Scholar 

  46. Z. Li, Q. Han, T. Yan, Z. Huang, Y. Song, Y. Wang, X. Zhang, J. Alloys Compd. 904, 164009 (2022)

    Google Scholar 

  47. W. Zheng, B. Sun, Y. Li, R. Wang, A.C.S. Appl, Nano Mater. 4, 3922–3931 (2021)

    Google Scholar 

  48. B. Cao, J. Wu, X. Wang, Y. He, Z. Feng, B. Dong, Sensors 15, 30981–30990 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11204039 and 51202033); Natural Science Foundation of Fujian Province of China (No. 2022J01951, No. 2021J01183, 2020J01194, 2020J01190 and 2019J01283); Nature fund Projects of Education Department of Fujian Province (JA15338, JA15354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuohong Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Lv, S. & Feng, Z. Enhanced temperature sensing performance of Er3+, Yb3+: PLZT ceramic based on emissions of Stark sublevels. Appl. Phys. A 129, 171 (2023). https://doi.org/10.1007/s00339-023-06458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06458-8

Keywords

Navigation