Skip to main content
Log in

Upconversion Luminescence and Temperature Sensing Properties of Er3+/Yb3+-Doped α-BiNbO4 Phosphor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nowadays, optical thermometry has attracted considerable attention because of its non-contact feature, high spatial resolution and fast response. In this work, Er3+/Yb3+-doped orthorhombic-phase BiNbO4 (α-BiNbO4:Er3+/Yb3+) phosphors are synthesized using the solid-state method to investigate the application of the material as an optical temperature sensor. X-ray diffraction (XRD) results reveal that all synthesized samples present a single orthorhombic phase, and Er3+/Yb3+ ion doping does not change the crystal structure. Under 980-nm laser excitation, two green emission bands located at 534 nm (2H11/2 → 4I15/2) and 558 nm (4S3/2 → 4I15/2) and one red emission band centered at 672 nm (4F9/2 → 4I15/2) are observed. The doping concentration has a significant effect on the fluorescence properties of the phosphors, and the optimal doping concentrations in the α-BiNbO4 host material are 3 mol.% Er3+ and 15 mol% Yb3+. The temperature-dependent upconversion emission spectra are investigated in the range of 150–500 K. The performance of the material as an optical temperature sensor is investigated based on the fluorescence intensity ratio (FIR) technique. Its maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) are 5.51‰ K−1 at T = 415 K and 3.7% K−1 at T = 150 K, respectively. Finally, its repeatability and the laser heating effect are discussed. The results show that α-BiNbO4:Er3+/Yb3+ phosphors have potential for application in non-contact optical temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.R.N. Childs, J.R. Greenwood, and C.A. Long, Review of temperature measurement. Rev. Entif. Instr. 71, 2959 (2000).

    Article  CAS  Google Scholar 

  2. T.T. Bai and N. Gu, Micro/nanoscale thermometry for cellular thermal sensing. Small 12, 1590–4610 (2016).

    Article  Google Scholar 

  3. W. Xu, Y. Cui, Y.W. Hu, L.J. Zheng, Z.G. Zhang, and W.W. Cao, Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation. J. Alloys Compd. 726, 547 (2017).

    Article  CAS  Google Scholar 

  4. Z. Ma, J. Gou, Y. Zhang, Y. Man, G. Li, C. Li, and J.F. Tang, Yb3+/Er3+ co-doped Lu2TeO6 nanophosphors: hydrothermal synthesis, upconversion luminescence and highly sensitive temperature sensing performance. J. Alloys Compd. 772, 525 (2018).

    Article  Google Scholar 

  5. E. Cortes-Adasme, M. Vega, I.R. Martin, and J. Llanos, Synthesis and characterization of SrSnO3 doped with Er3+ for up-conversion luminescence temperature sensors. RSC Adv. 7, 46796 (2017).

    Article  CAS  Google Scholar 

  6. J. Zhang, B. Ji, G. Chen, and Z. Hua, Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorg. Chem. 57, 5038 (2018).

    Article  CAS  Google Scholar 

  7. Y.J. Zhao, G.X. Bai, Y.J. Hua, Q.H. Yang, L. Chen, and S.Q. Xu, Optical thermometry based on upconversion emission of Yb3+/Er3+ codoped bismuth titanate microcrystals. J. Lumin. 221, 117037 (2020).

    Article  CAS  Google Scholar 

  8. M. Quintanilla, E. Cantelar, F. Cussό, M. Villegas, and A.C. Caballero, Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles. Appl. Phys. Exp. 4, 022601 (2011).

    Article  Google Scholar 

  9. D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior. J. Alloys Compd. 638, 21 (2015).

    Article  CAS  Google Scholar 

  10. S. Tabanli and G. Eryurek, Optical investigation of Er3+ and Er3+/Yb3+ doped zinc-tellurite glass for solid-state lighting and optical thermometry. Sens. Actuators, A 285, 448 (2018).

    Article  Google Scholar 

  11. J. Cao, J. Zhang, and X. Li, Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing. Appl. Opt. 57, 1345 (2018).

    Article  CAS  Google Scholar 

  12. G.Y. Zhang, Q.P. Qiang, S.S. Du, and Y.H. Wang, An upconversion luminescence and temperature sensor based on Yb3+/Er3+ co-doped GdSr2AlO5. RSC Adv. 8, 9512 (2018).

    Article  CAS  Google Scholar 

  13. J. Xie, J.G. Xue, J.X. Bin, M. Guan, H.K. Liu, L.B. Liao, L.F. Mei, and D.X. Yang, Hydrothermal synthesis and upconversion luminescent properties of Sr2LaF7 doped with Yb3+ and Er3+ nanophosphors. J. Lumin. 200, 133 (2018).

    Article  CAS  Google Scholar 

  14. X.R. Cheng, K. Yang, J.K. Wang, L.F. Yang, and X.S. Cheng, Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material. Opt. Mater. 58, 449 (2016).

    Article  CAS  Google Scholar 

  15. J. Wu, X.R. Cheng, F.C. Jiang, X.C. Feng, Q. Huang, and Q.Y. Lin, Optical temperature sensing properties of Er+/Yb+ co-doped LuVO4 up-conversion phosphors. Phys. B 561, 97 (2019).

    Article  CAS  Google Scholar 

  16. L. Geng, Y. Wang, and Y. Liu, Polymorph controlled synthesis and photoluminescence properties of Eu3+ doped BiNbO4. J. Mol. Struct. 1251, 132069 (2022).

    Article  CAS  Google Scholar 

  17. S.S. Dunkle and K.S. Suslick, Photodegradation of BiNbO4 powder during photocatalytic reactions. J. Phys. Chem. C 113, 10341 (2009).

    Article  CAS  Google Scholar 

  18. M.A. Subramanian and J.C. Calabrese, Crystal structure of the low temperature form of bismuth niobium oxide [α-BiNbO4]. Mater. Res. Bull. 28, 523 (1993).

    Article  CAS  Google Scholar 

  19. X.B. Dong, Z.B. Huangfu, S.Q. Feng, Y.F. Liang, H.J. Zhang, X. Zhu, K. Yang, Z. Wang, X.R. Cheng, and L. Su, Pressure-induced phase transition in α-and β-BiNbO4. Phys. Chem. Chem. Phys. 24, 20546 (1993).

    Article  Google Scholar 

  20. Y. Wang, X. Dong, H. Zhang, X. Deng, and X. Cheng, Upconversion luminescence, laser heating effect and temperature sensing properties of -BiNbO4:Er3+/Yb3+. J. Electron. Mater. 50, 201 (2021).

    Article  CAS  Google Scholar 

  21. A.J.M. Sales, D.G. Sousa, H.O. Rodrigues, M.M. Costa, A.S.B. Sombra, F.N.A. Freire, M.J. Soares, M.P.F. Graça, and J.S. Kum, Power dependent upconversion in Er3+/Yb3+ co-doped BiNbO4 phosphors. Ceram. Int. 42, 6899 (2016).

    Article  CAS  Google Scholar 

  22. X.R. Cheng, X.B. Dong, K. Peng, H.J. Zhang, Y.L. Su, and L.Y. Jiang, Upconversion luminescence and optical temperature sensing properties of LaNbO4:Yb+/Er+ phosphor. J. Electron. Mater 49, 518 (2020).

    Article  CAS  Google Scholar 

  23. D. Chavez, C.R. Garcia, J. Oliva, E. Montese, A.I. Mtz-Enriquezf, M.A. Garcia-Lobatoc, and L.A. Diaz-Torres, Effect of Yb3+ concentration on the green-yellow upconversion emission of SrGe4O9:Er3+ phosphors. Ceram. Int. 45, 16911 (2019).

    Article  CAS  Google Scholar 

  24. J.F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H.U. Güdel, Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 125123 (2005).

    Article  Google Scholar 

  25. P. Guchowski, U. Marciniak, M. Lastusaari, and W. Strek, Key factors tuning upconversion and near infrared luminescence in nanosized Lu2O3:Er3+, Yb3+. J. Alloy. Compd. 799, 481 (2019).

    Article  Google Scholar 

  26. P. Du, X. Huang, and J.S. Yu, Yb3+-Concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method. Inorg. Chem. Front. 4, 1987 (2017).

    Article  CAS  Google Scholar 

  27. Y. Guo, D. Wang, and Y. He, Fabrication, microstructure, and temperature sensing behavior based on upconversion luminescence of novel Er3+, Yb3+ co-doped YOF ceramic. J. Lumin. 201, 18 (2018).

    Article  CAS  Google Scholar 

  28. S.K. Singh, K. Kumar, and S.B. Rai, Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sens Actuators B Chem 149, 16 (2009).

    Article  CAS  Google Scholar 

  29. M.C. Jia, G.T. Liu, Z. Sun, Z.L. Fu, and W.G. Xu, Investigation on two forms of temperature sensing parameters for fluorescence intensity ratio thermometry based on thermal coupled theory. Inorg. Chem. 57, 1213 (2018).

    Article  CAS  Google Scholar 

  30. Z.Y. Wang, H. Jiao, and Z.L. Fu, Investigating the luminescence behaviors and temperature sensing properties of rare-earth-doped Ba2In2O5 phosphors. Inorg. Chem. 57, 8841 (2018).

    Article  CAS  Google Scholar 

  31. M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties. J. Mater. Chem. C 5, 4025 (2017).

    Article  CAS  Google Scholar 

  32. X.T. Zhang, Z.L. Fu, Z. Sun, G.F. Liu, J.H. Jeong, and Z.J. Wu, Temperature-induced phase transition and temperature sensing behavior in Yb3+ sensitized Er3+ doped YPO4 phosphors. Opt. Mater. 60, 526 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research Project of Department of Science and Technology in Henan Province (No. 212102410003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Zhang, H., He, L. et al. Upconversion Luminescence and Temperature Sensing Properties of Er3+/Yb3+-Doped α-BiNbO4 Phosphor. J. Electron. Mater. 52, 3386–3393 (2023). https://doi.org/10.1007/s11664-023-10315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10315-y

Keywords

Navigation