Skip to main content

Advertisement

Log in

Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the increasing demand for a higher energy density and a lower cost energy storage system, lithium–sulfur batteries have become one of the promising candidates to replace current Li-ion batteries. However, in liquid electrolyte systems, the lithium dendrite growth and the shuttle effect cause severe safety hazard as well as capacity decay, which hinders the commercialization of practical lithium–sulfur batteries. Polymer-based electrolytes provide a promising solution to these challenges. This type of electrolyte, including polymer and composite polymer electrolytes, demonstrates the capabilities to prevent polysulfide dissolution and suppress lithium dendrite growths, while ensuring good surface contact and high flame resistance. This review summarizes the most recent progress of polymer-based all-solid-state lithium–sulfur batteries (ASSLSB), which revealed mechanisms and challenges of electrolyte ionic conductivity, reaction mechanism, anode/electrolyte interface, and cathode/electrolyte interface. Based on these revealed principles, possible solutions to these challenges such as the addition of inorganic fillers, interface modification, utilization of different types of lithium salt and polymers are introduced. In addition, the state-of-the-art approaches with great performance improvement are highlighted in this review. Finally, we provide perspectives on research directions that can further the understanding and development of polymer-based ASSLSB.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reproduced with permission from ref. [28], Copyright 2015, Royal Society of Chemistry

Figure 3
Figure 4

Reproduced with permission from ref. [64], Copyright 2016, Elsevier Ltd. c Schematic illustration of the fast-ionic conduction pathway along the space charge regions. Reproduced with permission from ref. [65], Copyright 2018, American Chemical Society

Figure 5

Reproduced with permission from ref. [48], Copyright 2016, Elsevier B.V

Figure 6

Reproduced with permission from ref. [102], Copyright 2020, WILEY‐VCH

Figure 7

Reproduced with permission from ref. [105], Copyright 2006 Elsevier Ltd. b SEM images of lithium metal deposited onto bare stainless steel substrate in the electrolyte. i With the addition of only LiNO3 (1 wt%) and ii with the addition of both Li2S8 (0.18 M) and LiNO3 (1 wt%). (Scale bars in b, 20 μm.) Reproduced with permission from ref. [106], Copyright 2015, Nature Publishing Group

Figure 8

Reproduced with permission from ref. [107], Copyright 2017, American Chemical Society. c, d Top view c and cross-section view d of Li anode surface cycled with PEO/LiTFSI electrolyte. Reproduced with permission from ref. [108], Copyright 2019, American Chemical Society

Figure 9

Reproduced with permission from ref. [118], Copyright 2016, the Author(s)

Figure 10

Reproduced with permission from ref. [128], Copyright 2018, American Chemical Society

Figure 11

Reproduced with permission from ref. [135], Copyright 2018, WILEY‐VCH. b Schematic of the electrochemical deposition behavior of the Li metal anode with (left) the PLL solid electrolyte with immobilized anions and (right) the routine liquid electrolyte with mobile anions. c SEM images of Li metal plating on Cu foils with the presence of PEO-LiTFSI-LLZTO (PLL) and routine liquid electrolytes (1 M LiPF6-EC/DEC). (Scale bars in c, 10 μm.) Reproduced with permission from ref. [132], Copyright 2017, PNAS

Figure 12

Reproduced with permission from ref. [139], Copyright 2002, Elsevier Science B.V. c Synthesis route of PEG grafted graphene oxide cathode (GO-PEG@C/S). Reproduced with permission from ref. [144], Copyright 2017, Royal Society of Chemistry

Figure 13

Similar content being viewed by others

References

  1. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821–9826. https://doi.org/10.1039/B925751A

    Article  CAS  Google Scholar 

  2. Busche MR, Adelhelm P, Sommer H et al (2014) Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. J Power Sources 259:289–299. https://doi.org/10.1016/j.jpowsour.2014.02.075

    Article  CAS  Google Scholar 

  3. Fang R, Zhao S, Sun Z et al (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29:1606823. https://doi.org/10.1002/adma.201606823

    Article  CAS  Google Scholar 

  4. Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE (2011) A study of the electrochemical processes in lithium–sulphur cells by impedance spectroscopy. J Power Sources 196:1478–1482. https://doi.org/10.1016/j.jpowsour.2010.08.105

    Article  CAS  Google Scholar 

  5. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206. https://doi.org/10.1038/nnano.2017.16

    Article  CAS  Google Scholar 

  6. Peled E (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144:L208. https://doi.org/10.1149/1.1837858

    Article  CAS  Google Scholar 

  7. Hagen M, Hanselmann D, Ahlbrecht K et al (2015) Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5:1401986. https://doi.org/10.1002/aenm.201401986

    Article  CAS  Google Scholar 

  8. Yang X, Luo J, Sun X (2020) Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chem Soc Rev 49:2140–2195. https://doi.org/10.1039/C9CS00635D

    Article  CAS  Google Scholar 

  9. Wu Z, Xie Z, Yoshida A et al (2019) Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review. Renew Sustain Energy Rev 109:367–385. https://doi.org/10.1016/j.rser.2019.04.035

    Article  CAS  Google Scholar 

  10. Bag S, Zhou C, Kim PJ et al (2020) LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Mater 24:198–207. https://doi.org/10.1016/j.ensm.2019.08.019

    Article  Google Scholar 

  11. Zhao Y, Wu C, Peng G et al (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:47–53. https://doi.org/10.1016/j.jpowsour.2015.09.111

    Article  CAS  Google Scholar 

  12. Eshetu GG, Judez X, Li C et al (2017) Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed 56:15368–15372. https://doi.org/10.1002/anie.201709305

    Article  CAS  Google Scholar 

  13. Cheng X, Pan J, Zhao Y et al (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184. https://doi.org/10.1002/aenm.201702184

    Article  CAS  Google Scholar 

  14. Xia Y, Wang X, Xia X et al (2017) A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium–sulfur batteries. Chem A Eur J 23:15203–15209. https://doi.org/10.1002/chem.201703464

    Article  CAS  Google Scholar 

  15. Zhou D, Shanmukaraj D, Tkacheva A et al (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  16. Osada I, de Vries H, Scrosati B, Passerini S (2016) Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 55:500–513. https://doi.org/10.1002/anie.201504971

    Article  CAS  Google Scholar 

  17. Guo P, Su A, Wei Y et al (2019) Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl Mater Interfaces 11:19413–19420. https://doi.org/10.1021/acsami.9b02182

    Article  CAS  Google Scholar 

  18. Guyomard-Lack A, Abusleme J, Soudan P et al (2014) Hybrid silica-polymer ionogel solid electrolyte with tunable properties. Adv Energy Mater 4:1301570. https://doi.org/10.1002/aenm.201301570

    Article  CAS  Google Scholar 

  19. Yang G, Song Y, Wang Q et al (2020) Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater Des 190:108563. https://doi.org/10.1016/j.matdes.2020.108563

    Article  CAS  Google Scholar 

  20. Ashby DS, DeBlock RH, Lai C-H et al (2017) Patternable, solution-processed ionogels for thin-film lithium-ion electrolytes. Joule 1:344–358. https://doi.org/10.1016/j.joule.2017.08.012

    Article  CAS  Google Scholar 

  21. Golodnitsky D, Strauss E, Peled E, Greenbaum S (2015) Review—on order and disorder in polymer electrolytes. J Electrochem Soc 162:A2551–A2566. https://doi.org/10.1149/2.0161514jes

    Article  CAS  Google Scholar 

  22. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer (Guildf) 14:589. https://doi.org/10.1016/0032-3861(73)90146-8

    Article  CAS  Google Scholar 

  23. Zhang X, Liu T, Zhang S et al (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785. https://doi.org/10.1021/jacs.7b06364

    Article  CAS  Google Scholar 

  24. Yu J, Kwok SCT, Lu Z et al (2018) A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature. ChemElectroChem 5:2873–2881. https://doi.org/10.1002/celc.201800643

    Article  CAS  Google Scholar 

  25. Cheng S, Smith DM, Li CY (2014) How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules 47:3978–3986. https://doi.org/10.1021/ma500734q

    Article  CAS  Google Scholar 

  26. Deepa M, Sharma N, Agnihotry SA et al (2002) Conductivity and viscosity of liquid and gel electrolytes based on LiClO4, LiN(CF3SO2)2 and PMMA. Solid State Ion 152–153:253–258. https://doi.org/10.1016/S0167-2738(02)00307-7

    Article  Google Scholar 

  27. Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39:1620–1629. https://doi.org/10.1021/ma052277v

    Article  CAS  Google Scholar 

  28. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253. https://doi.org/10.1039/C5TA03471J

    Article  CAS  Google Scholar 

  29. Webb MA, Jung Y, Pesko DM et al (2015) Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent Sci 1:198–205. https://doi.org/10.1021/acscentsci.5b00195

    Article  CAS  Google Scholar 

  30. Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11:91–95. https://doi.org/10.1016/0167-2738(83)90068-1

    Article  CAS  Google Scholar 

  31. Stolwijk NA, Heddier C, Reschke M et al (2013) Salt-concentration dependence of the glass transition temperature in PEO–NaI and PEO–LiTFSI polymer electrolytes. Macromolecules 46:8580–8588. https://doi.org/10.1021/ma401686r

    Article  CAS  Google Scholar 

  32. Pesko DM, Timachova K, Bhattacharya R et al (2017) Negative transference numbers in poly (ethylene oxide)-based electrolytes. J Electrochem Soc 164:E3569–E3575. https://doi.org/10.1149/2.0581711jes

    Article  CAS  Google Scholar 

  33. Pożyczka K, Marzantowicz M, Dygas JR, Krok F (2017) Ionic conductivity and lithium transference number of poly(ethylene oxide):LiTFSI system. Electrochim Acta 227:127–135. https://doi.org/10.1016/j.electacta.2016.12.172

    Article  CAS  Google Scholar 

  34. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer (Guildf) 28:2324–2328. https://doi.org/10.1016/0032-3861(87)90394-6

    Article  CAS  Google Scholar 

  35. Thomas J (1996) Solid state electrochemistry. Edited by Peter G. Bruce, Cambridge University Press, Cambridge 1995, XVI, 344 pp., hardcover, £60.00, ISBN 0-521-40007-4. Adv Mater 8:360. https://doi.org/10.1002/adma.19960080417

    Article  Google Scholar 

  36. Hiller MM, Joost M, Gores HJ et al (2013) The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochim Acta 114:21–29. https://doi.org/10.1016/j.electacta.2013.09.138

    Article  CAS  Google Scholar 

  37. Lemaı̂tre-Auger F, Prud’homme J (2001) Ion–ion, short-range interactions in PEO-LiX rubbery electrolytes containing LiSCN, LiN(CF3SO2)2 or Li[CF3SO2N(CH2)3OCH3] as deduced from studies performed on PEO-LiX-KX ternary systems. Electrochim Acta 46:1359–1367. https://doi.org/10.1016/S0013-4686(00)00720-9

    Article  Google Scholar 

  38. Zhao Y, Tao R, Fujinami T (2006) Enhancement of ionic conductivity of PEO-LiTFSI electrolyte upon incorporation of plasticizing lithium borate. Electrochim Acta 51:6451–6455. https://doi.org/10.1016/j.electacta.2006.04.030

    Article  CAS  Google Scholar 

  39. Rey I (1998) Raman spectroelectrochemistry of a lithium/polymer electrolyte symmetric cell. J Electrochem Soc 145:3034. https://doi.org/10.1149/1.1838759

    Article  CAS  Google Scholar 

  40. Edman L, Doeff MM, Ferry A et al (2000) Transport properties of the solid polymer electrolyte system P(EO)nLiTFSI. J Phys Chem B 104:3476–3480. https://doi.org/10.1021/jp993897z

    Article  CAS  Google Scholar 

  41. Pesko DM, Timachova K, Bhattacharya R et al (2017) Negative transference numbers in poly(ethylene oxide)-based electrolytes. J Electrochem Soc 164:E3569–E3575. https://doi.org/10.1149/2.0581711jes

    Article  CAS  Google Scholar 

  42. Bruce PG (2006) Ion–polyether coordination complexes: crystalline ionic conductors for clean energy storage. J Chem Soc Dalton Trans 60:13651365–13691369. https://doi.org/10.1039/b517247k

    Article  CAS  Google Scholar 

  43. Brandell D, Liivat A, Aabloo A, Thomas JO (2005) Conduction mechanisms in crystalline LiPF6·PEO6 doped with SiF62- and SF6. Chem Mater 17:3673–3680. https://doi.org/10.1021/cm0505401

    Article  CAS  Google Scholar 

  44. Johansson P, Tegenfeldt J, Lindgren J (2001) Modelling lithium ion transport in helical PEO by ab initio calculations. Polymer (Guildf) 42:6573–6577. https://doi.org/10.1016/S0032-3861(01)00101-X

    Article  CAS  Google Scholar 

  45. Andreev YG, Lightfoot P, Bruce PG (1996) Structure of the polymer electrolyte poly(ethylene oxide)3: LiN(SO2CF3)2 determined by powder diffraction using a powerful Monte Carlo approach. Chem Commun. https://doi.org/10.1039/CC9960002169

    Article  Google Scholar 

  46. Chen L, Fan L (2018) Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater 15:37–45. https://doi.org/10.1016/j.ensm.2018.03.015

    Article  Google Scholar 

  47. Zou Z, Li Y, Lu Z et al (2020) Mobile ions in composite solids. Chem Rev 120:4169–4221. https://doi.org/10.1021/acs.chemrev.9b00760

    Article  CAS  Google Scholar 

  48. Marceau H, Kim C-S, Paolella A et al (2016) In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. J Power Sources 319:247–254. https://doi.org/10.1016/j.jpowsour.2016.03.093

    Article  CAS  Google Scholar 

  49. Judez X, Eshetu GG, Gracia I et al (2019) Understanding the role of nano-aluminum oxide in all-solid-state lithium–sulfur batteries. ChemElectroChem 6:326–330. https://doi.org/10.1002/celc.201801390

    Article  CAS  Google Scholar 

  50. Sheng O, Jin C, Luo J et al (2017) Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. J Mater Chem A 5:12934–12942. https://doi.org/10.1039/C7TA03699J

    Article  CAS  Google Scholar 

  51. Shin JH, Kim KW, Ahn HJ, Ahn JH (2002) Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n−1 composite polymer electrolytes for lithium/sulfur battery. Mater Sci Eng B 95:148–156. https://doi.org/10.1016/S0921-5107(02)00226-X

    Article  Google Scholar 

  52. Jung Y-C, Lee S-M, Choi J-H et al (2015) All solid-state lithium batteries assembled with hybrid solid electrolytes. J Electrochem Soc 162:A704–A710. https://doi.org/10.1149/2.0731504jes

    Article  CAS  Google Scholar 

  53. Temeche E, Zhang X, Laine RM (2020) Solid electrolytes for Li–S batteries: solid solutions of poly(ethylene oxide) with LixPON- and LixSiPON-based polymers. ACS Appl Mater Interfaces 12:30353–30364. https://doi.org/10.1021/acsami.0c06196

    Article  CAS  Google Scholar 

  54. Zhang Y, Chen R, Wang S et al (2020) Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater 25:145–153. https://doi.org/10.1016/j.ensm.2019.10.020

    Article  CAS  Google Scholar 

  55. Choi J-H, Lee C-H, Yu J-H et al (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 274:458–463. https://doi.org/10.1016/j.jpowsour.2014.10.078

    Article  CAS  Google Scholar 

  56. Wieczorek W, Stevens JR, Florjańczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ion 85:67–72. https://doi.org/10.1016/0167-2738(96)00042-2

    Article  CAS  Google Scholar 

  57. Xiong H-M, Zhao K-K, Zhao X et al (2003) Elucidating the conductivity enhancement effect of nano-sized SnO2 fillers in the hybrid polymer electrolyte PEO–SnO2–LiClO4. Solid State Ion 159:89–95. https://doi.org/10.1016/S0167-2738(02)00917-7

    Article  CAS  Google Scholar 

  58. Croce F, Persi L, Scrosati B et al (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461. https://doi.org/10.1016/S0013-4686(01)00458-3

    Article  CAS  Google Scholar 

  59. Maier J (1985) Space charge regions in solid two-phase systems and their conduction contribution—I. Conductance enhancement in the system ionic conductor-‘inert’ phase and application on AgC1:Al2O3 and AgC1:SiO2. J Phys Chem Solids 46:309–320. https://doi.org/10.1016/0022-3697(85)90172-6

    Article  CAS  Google Scholar 

  60. Roman HE, Bunde A, Dieterich W (1986) Conductivity of dispersed ionic conductors: a percolation model with two critical points. Phys Rev B 34:3439–3445. https://doi.org/10.1103/PhysRevB.34.3439

    Article  CAS  Google Scholar 

  61. Zheng J, Tang M, Hu Y-Y (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 55:12538–12542. https://doi.org/10.1002/anie.201607539

    Article  CAS  Google Scholar 

  62. Yang T, Zheng J, Cheng Q et al (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces 9:21773–21780. https://doi.org/10.1021/acsami.7b03806

    Article  CAS  Google Scholar 

  63. Zheng J, Wang P, Liu H, Hu Y-Y (2019) Interface-enabled ion conduction in Li10GeP2S12–poly(ethylene oxide) hybrid electrolytes. ACS Appl Energy Mater 2:1452–1459. https://doi.org/10.1021/acsaem.8b02008

    Article  CAS  Google Scholar 

  64. Zhang J, Zhao N, Zhang M et al (2016) Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28:447–454. https://doi.org/10.1016/j.nanoen.2016.09.002

    Article  CAS  Google Scholar 

  65. Li Z, Huang H-M, Zhu J-K et al (2019) Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl Mater Interfaces 11:784–791. https://doi.org/10.1021/acsami.8b17279

    Article  CAS  Google Scholar 

  66. Tao X, Liu Y, Liu W et al (2017) Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17:2967–2972. https://doi.org/10.1021/acs.nanolett.7b00221

    Article  CAS  Google Scholar 

  67. Chen L, Li Y, Li S-P et al (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46:176–184. https://doi.org/10.1016/j.nanoen.2017.12.037

    Article  CAS  Google Scholar 

  68. Huang Z, Pang W, Liang P et al (2019) A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J Mater Chem A 7:16425–16436. https://doi.org/10.1039/C9TA03395E

    Article  CAS  Google Scholar 

  69. Gupta A, Sakamoto J (2019) Controlling Ionic Transport Through the PEO-LiTFSI/LLZTO interface. Electrochem Soc Interface 28:63–69. https://doi.org/10.1149/2.f06192if

    Article  CAS  Google Scholar 

  70. Diwan P, Chandra A (2012) Percolation threshold and conductivity of polymer electrolyte composites: effect of dispersoid particle size. Polym Compos 33:1750–1754. https://doi.org/10.1002/pc.22309

    Article  CAS  Google Scholar 

  71. Li Y, Zhao Y, Cui Y et al (2018) Screening polyethylene oxide-based composite polymer electrolytes via combining effective medium theory and Halpin-Tsai model. Comput Mater Sci 144:338–344. https://doi.org/10.1016/j.commatsci.2017.12.014

    Article  CAS  Google Scholar 

  72. Lin D, Liu W, Liu Y et al (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 16:459–465. https://doi.org/10.1021/acs.nanolett.5b04117

    Article  CAS  Google Scholar 

  73. Fan L, Nan C-W, Zhao S (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ion 164:81–86. https://doi.org/10.1016/j.ssi.2003.08.004

    Article  CAS  Google Scholar 

  74. Wild M, O’Neill L, Zhang T et al (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8:3477–3494. https://doi.org/10.1039/C5EE01388G

    Article  CAS  Google Scholar 

  75. Leghié P, Lelieur J-P, Levillain E (2002) Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide. Electrochem commun 4:406–411. https://doi.org/https://doi.org/10.1016/S1388-2481(02)00333-8

  76. Lu Y-C, He Q, Gasteiger HA (2014) Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J Phys Chem C 118:5733–5741. https://doi.org/10.1021/jp500382s

    Article  CAS  Google Scholar 

  77. Cuisinier M, Hart C, Balasubramanian M et al (2015) Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv Energy Mater 5:1401801. https://doi.org/10.1002/aenm.201401801

    Article  CAS  Google Scholar 

  78. Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO–NH4F polymer electrolytes. Eur Polym J 38:1297–1304. https://doi.org/10.1016/S0014-3057(01)00310-X

    Article  CAS  Google Scholar 

  79. Song YX, Shi Y, Wan J et al (2019) Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study. Energy Environ Sci 12:2496–2506. https://doi.org/10.1039/c9ee00578a

    Article  CAS  Google Scholar 

  80. Yu X, Xie J, Yang J, Wang K (2004) All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes. J Power Sources 132:181–186. https://doi.org/10.1016/j.jpowsour.2004.01.034

    Article  CAS  Google Scholar 

  81. Zhang C, Lin Y, Liu J (2015) Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium–sulfur batteries. J Mater Chem A 3:10760–10766. https://doi.org/10.1039/c5ta01037c

    Article  CAS  Google Scholar 

  82. Lin Y, Wang X, Liu J, Miller JD (2017) Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium–sulfur batteries. Nano Energy 31:478–485. https://doi.org/10.1016/j.nanoen.2016.11.045

    Article  CAS  Google Scholar 

  83. Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics (Kiel) 21:381–385. https://doi.org/10.1007/s11581-014-1176-2

    Article  CAS  Google Scholar 

  84. Diao Y, Xie K, Xiong S, Hong X (2013) Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li–S battery. J Power Sources 235:181–186. https://doi.org/10.1016/j.jpowsour.2013.01.132

    Article  CAS  Google Scholar 

  85. Zhu Y, Li J, Liu J (2017) A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. J Power Sources 351:17–25. https://doi.org/10.1016/j.jpowsour.2017.03.072

    Article  CAS  Google Scholar 

  86. Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv Mater 22:5198–5201. https://doi.org/10.1002/adma.201002584

    Article  CAS  Google Scholar 

  87. Fan Z, Ding B, Zhang T et al (2019) Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium–sulfur batteries by atomic layer deposition. Small 15:1903952. https://doi.org/10.1002/smll.201903952

    Article  CAS  Google Scholar 

  88. Wang DR, Shah DB, Maslyn JA et al (2018) Rate constants of electrochemical reactions in a lithium–sulfur cell determined by operando X-ray absorption spectroscopy. J Electrochem Soc 165:A3487–A3495. https://doi.org/10.1149/2.0981814jes

    Article  CAS  Google Scholar 

  89. Meddings N, Judez X, Li C, Garcia-Araez N (2020) A highly sensitive electrochemical sensor of polysulfides in polymer lithium–sulfur batteries. J Electrochem Soc 167:80520. https://doi.org/10.1149/1945-7111/ab8ce9

    Article  CAS  Google Scholar 

  90. Xu K, Liu X, Liang J et al (2018) Manipulating the redox kinetics of Li–S chemistry by tellurium doping for improved Li–S batteries. ACS Energy Lett 3:420–427. https://doi.org/10.1021/acsenergylett.7b01249

    Article  CAS  Google Scholar 

  91. Xu H, Jiang Q, Zhang B et al (2020) Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host. Adv Mater 32:1906357. https://doi.org/10.1002/adma.201906357

    Article  CAS  Google Scholar 

  92. Deng N, Wang L, Feng Y et al (2020) Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium–sulfur batteries. Chem Eng J 388:124241. https://doi.org/10.1016/j.cej.2020.124241

    Article  CAS  Google Scholar 

  93. Hong X-J, Song C-L, Yang Y et al (2019) Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13:1923–1931. https://doi.org/10.1021/acsnano.8b08155

    Article  CAS  Google Scholar 

  94. Li M, Frerichs JE, Kolek M et al (2020) Solid-state lithium-sulfur battery enabled by Thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv Funct Mater. https://doi.org/10.1002/adfm.201910123

    Article  Google Scholar 

  95. Wang W, Cao Z, Elia GA et al (2018) Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries. ACS Energy Lett 3:2899–2907. https://doi.org/10.1021/acsenergylett.8b01945

    Article  CAS  Google Scholar 

  96. Judez X, Zhang H, Li C et al (2017) Polymer-rich composite electrolytes for all-solid-state Li–S cells. J Phys Chem Lett 8:3473–3477. https://doi.org/10.1021/acs.jpclett.7b01321

    Article  CAS  Google Scholar 

  97. Ding B, Shen L, Xu G et al (2013) Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochim Acta 107:78–84. https://doi.org/10.1016/j.electacta.2013.06.009

    Article  CAS  Google Scholar 

  98. Bieker G, Wellmann J, Kolek M et al (2017) Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry. Phys Chem Chem Phys 19:11152–11162. https://doi.org/10.1039/C7CP01238A

    Article  CAS  Google Scholar 

  99. Zhang G, Peng H-J, Zhao C-Z et al (2018) The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries. Angew Chem Int Ed 57:16732–16736. https://doi.org/10.1002/anie.201810132

    Article  CAS  Google Scholar 

  100. He Q, Gorlin Y, Patel MUM et al (2018) Unraveling the correlation between solvent properties and sulfur redox behavior in lithium–sulfur batteries. J Electrochem Soc 165:A4027–A4033. https://doi.org/10.1149/2.0991816jes

    Article  CAS  Google Scholar 

  101. Ho T-L (1975) Hard soft acids bases (HSAB) principle and organic chemistry. Chem Rev 75:1–20. https://doi.org/10.1021/cr60293a001

    Article  CAS  Google Scholar 

  102. Fang R, Xu H, Xu B et al (2020) Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv Funct Mater 2001812:1–7. https://doi.org/10.1002/adfm.202001812

    Article  CAS  Google Scholar 

  103. Wang P, Qu W, Song W-L et al (2019) Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater 29:1900950. https://doi.org/10.1002/adfm.201900950

    Article  CAS  Google Scholar 

  104. Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  105. Rosso M, Brissot C, Teyssot A et al (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51:5334–5340. https://doi.org/10.1016/j.electacta.2006.02.004

    Article  CAS  Google Scholar 

  106. Li W, Yao H, Yan K et al (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436. https://doi.org/10.1038/ncomms8436

    Article  CAS  Google Scholar 

  107. Zhang Y, Heim FM, Song N et al (2017) New Insights into Mossy Li induced anode degradation and its formation mechanism in Li–S batteries. ACS Energy Lett 2:2696–2705. https://doi.org/10.1021/acsenergylett.7b00886

    Article  CAS  Google Scholar 

  108. Li X, Wang D, Wang H et al (2019) Poly(ethylene oxide)–Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces 11:22745–22753. https://doi.org/10.1021/acsami.9b05212

    Article  CAS  Google Scholar 

  109. Zhang H, Judez X, Santiago A et al (2019) Fluorine-free noble salt anion for high-performance all-solid-state lithium–sulfur batteries. Adv Energy Mater 9:1900763. https://doi.org/10.1002/aenm.201900763

    Article  CAS  Google Scholar 

  110. Chazalviel J-N (1990) Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 42:7355–7367. https://doi.org/10.1103/PhysRevA.42.7355

    Article  CAS  Google Scholar 

  111. Rosso M, Gobron T, Brissot C et al (2001) Onset of dendritic growth in lithium/polymer cells. J Power Sources 97–98:804–806. https://doi.org/10.1016/S0378-7753(01)00734-0

    Article  Google Scholar 

  112. Cheng X-B, Zhang R, Zhao C-Z et al (2016) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3:1500213. https://doi.org/10.1002/advs.201500213

    Article  CAS  Google Scholar 

  113. Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems—a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150:A1377–A1384. https://doi.org/10.1149/1.1606686

    Article  CAS  Google Scholar 

  114. Mikhaylik YV, Kovalev I, Schock R et al (2019) High energy rechargeable Li–S cells for EV application: status, remaining problems and solutions. ECS Trans 25:23–34. https://doi.org/10.1149/1.3414001

    Article  Google Scholar 

  115. Natsiavas PP, Weinberg K, Rosato D, Ortiz M (2016) Effect of prestress on the stability of electrode–electrolyte interfaces during charging in lithium batteries. J Mech Phys Solids 95:92–111. https://doi.org/10.1016/j.jmps.2016.05.007

    Article  CAS  Google Scholar 

  116. Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152:a396. https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  117. Barai P, Higa K, Srinivasan V (2017) Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 19:20493–20505. https://doi.org/10.1039/C7CP03304D

    Article  CAS  Google Scholar 

  118. Harry KJ, Higa K, Srinivasan V, Balsara NP (2016) Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode. J Electrochem Soc 163:A2216–A2224. https://doi.org/10.1149/2.0191610jes

    Article  CAS  Google Scholar 

  119. Wang Y, Sahadeo E, Rubloff G et al (2019) High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sci. https://doi.org/10.1007/s10853-018-3093-7

    Article  Google Scholar 

  120. Wang Y, Lin C-F, Rao J et al (2018) Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries. ACS Appl Mater Interfaces 10:24554–24563. https://doi.org/10.1021/acsami.8b07248

    Article  CAS  Google Scholar 

  121. Ma L, Kim MS, Archer LA (2017) Stable artificial solid electrolyte interphases for lithium batteries. Chem Mater 29:4181–4189. https://doi.org/10.1021/acs.chemmater.6b03687

    Article  CAS  Google Scholar 

  122. Lin L, Liang F, Zhang K et al (2018) Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. J Mater Chem A 6:15859–15867. https://doi.org/10.1039/C8TA05102J

    Article  CAS  Google Scholar 

  123. Yan Q, Whang G, Wei Z et al (2020) A Perspective on interfacial engineering of lithium metal anodes and beyond. Appl Phys Lett 117:80504. https://doi.org/10.1063/5.0018417

    Article  CAS  Google Scholar 

  124. Liang X, Wen Z, Liu Y et al (2011) Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sources 196:9839–9843. https://doi.org/10.1016/j.jpowsour.2011.08.027

    Article  CAS  Google Scholar 

  125. Xiong S, Xie K, Diao Y, Hong X (2014) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J Power Sources 246:840–845. https://doi.org/10.1016/j.jpowsour.2013.08.041

    Article  CAS  Google Scholar 

  126. Cheng X-B, Huang J-Q, Zhang Q (2018) Review—Li metal anode in working lithium–sulfur batteries. J Electrochem Soc 165:A6058–A6072. https://doi.org/10.1149/2.0111801jes

    Article  CAS  Google Scholar 

  127. Judez X, Zhang H, Li C et al (2017) Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell. J Phys Chem Lett 8:1956–1960. https://doi.org/10.1021/acs.jpclett.7b00593

    Article  CAS  Google Scholar 

  128. Eshetu GG, Judez X, Li C et al (2018) Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J Am Chem Soc 140:9921–9933. https://doi.org/10.1021/jacs.8b04612

    Article  CAS  Google Scholar 

  129. Zhang H, Oteo U, Judez X et al (2019) Designer anion enabling solid-state lithium-sulfur batteries. Joule 3:1689–1702. https://doi.org/10.1016/j.joule.2019.05.003

    Article  CAS  Google Scholar 

  130. Choudhury S, Archer LA (2016) Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv Electron Mater 2:1500246. https://doi.org/10.1002/aelm.201500246

    Article  CAS  Google Scholar 

  131. Chen L, Chen K-S, Chen X et al (2018) Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Appl Mater Interfaces 10:26972–26981. https://doi.org/10.1021/acsami.8b04573

    Article  CAS  Google Scholar 

  132. Zhao C-Z, Zhang X-Q, Cheng X-B et al (2017) An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci 114:11069–11074. https://doi.org/10.1073/pnas.1708489114

    Article  CAS  Google Scholar 

  133. Geng HZ, Rosen R, Zheng B et al (2002) Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14:1387–1390. https://doi.org/10.1002/1521-4095(20021002)14:19%3c1387::AID-ADMA1387%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  134. Alloin F, D’Aprea A, El Kissi N et al (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55:5186–5194. https://doi.org/10.1016/j.electacta.2010.04.034

    Article  CAS  Google Scholar 

  135. Lin D, Yuen PY, Liu Y et al (2018) A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30:e1802661. https://doi.org/10.1002/adma.201802661

    Article  CAS  Google Scholar 

  136. Chen N, Zhang H, Li L et al (2018) Ionogel electrolytes for high-performance lithium batteries: a review. Adv Energy Mater 8:1702675. https://doi.org/10.1002/aenm.201702675

    Article  CAS  Google Scholar 

  137. Tikekar MD, Archer LA, Koch DL (2014) Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J Electrochem Soc 161:A847–A855. https://doi.org/10.1149/2.085405jes

    Article  CAS  Google Scholar 

  138. Gao J, Sun C, Xu L et al (2018) Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J Power Sources 382:179–189. https://doi.org/10.1016/j.jpowsour.2018.01.063

    Article  CAS  Google Scholar 

  139. Jeon BH, Yeon JH, Kim KM, Chung IJ (2002) Preparation and electrochemical properties of lithium–sulfur polymer batteries. J Power Sources 109:89–97. https://doi.org/10.1016/S0378-7753(02)00050-2

    Article  CAS  Google Scholar 

  140. Zhu X, Wen Z, Gu Z, Lin Z (2005) Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J Power Sources 139:269–273. https://doi.org/10.1016/j.jpowsour.2004.07.002

    Article  CAS  Google Scholar 

  141. Devaux D, Villaluenga I, Jiang X et al (2020) Lithium–sulfur batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J Electrochem Soc 167:60506. https://doi.org/10.1149/1945-7111/ab7c6c

    Article  CAS  Google Scholar 

  142. Lécuyer M, Gaubicher J, Deschamps M et al (2013) Structural changes of a Li/S rechargeable cell in lithium metal polymer technology. J Power Sources 241:249–254. https://doi.org/10.1016/j.jpowsour.2013.04.119

    Article  CAS  Google Scholar 

  143. Zhou C, Bag S, He T et al (2020) A 20 °C operating high capacity solid-state Li–S battery with an engineered carbon support cathode structure. Appl Mater Today 19:100585. https://doi.org/10.1016/j.apmt.2020.100585

    Article  Google Scholar 

  144. Zhang C, Lin Y, Zhu Y et al (2017) Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries. RSC Adv 7:19231–19236. https://doi.org/10.1039/C7RA02174G

    Article  CAS  Google Scholar 

  145. Bielefeld A, Weber DA, Janek J (2019) Microstructural modeling of composite cathodes for all-solid-state batteries. J Phys Chem C 123:1626–1634. https://doi.org/10.1021/acs.jpcc.8b11043

    Article  CAS  Google Scholar 

  146. Wang J, Yan X, Zhang Z et al (2020) Rational design of an electron/ion dual-conductive cathode framework for high-performance all-solid-state lithium batteries. ACS Appl Mater Interfaces 12:41323–41332. https://doi.org/10.1021/acsami.0c10463

    Article  CAS  Google Scholar 

  147. Niu C, Liu J, Chen G, et al (2019) Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries. J Power Sources 417:70–75. https://doi.org/https://doi.org/10.1016/j.jpowsour.2019.02.004

  148. Zhang J, Zhao J, Yue L et al (2015) Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 5:1501082. https://doi.org/10.1002/aenm.201501082

    Article  CAS  Google Scholar 

  149. Chai J, Liu Z, Ma J et al (2017) In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci 4:1600377. https://doi.org/10.1002/advs.201600377

    Article  CAS  Google Scholar 

  150. Sahadeo E, Wang Y, Lin C-F et al (2020) Mg2+ ion-catalyzed polymerization of 1,3-dioxolane in battery electrolytes. Chem Commun 56:4583–4586. https://doi.org/10.1039/D0CC01769H

    Article  CAS  Google Scholar 

  151. Khan K, Tu Z, Zhao Q et al (2019) Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chem Mater 31:8466–8472. https://doi.org/10.1021/acs.chemmater.9b02823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in initial draft writing as part of the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160 and continued in manuscript writing and discussions supported by the U.S.-Israel Energy Center program managed by the U.S.-Israel Binational Industrial Research and Development (BIRD) Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Bok Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Wang, Y., Kim, N. et al. Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement. J Mater Sci 56, 8358–8382 (2021). https://doi.org/10.1007/s10853-021-05832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05832-2

Navigation