Skip to main content
Log in

Review: Oxygen-deficient tungsten oxides

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxygen-deficient/non-stoichiometric tungsten oxides are a distinct class between two only stoichiometric tungsten oxides, i.e., WO3 and WO2. The WO3 could be termed as a parent structure while understanding the non-stoichiometric tungsten oxides. The oxygen vacancies (Ovacs) induced in the parent (WO3) structures cause the re-adjustment of atomic arrangement to compensate for the oxygen deficiency and follow the crystal chemistry. The degree of Ovacs determines the range of WO3-x. The W18O49 (WO2.722) is the highest oxygen-deficient stable phase. These non-stoichiometric oxides proved superior to WO3 for various applications. Thus, the composition, chemistry, crystallography, synthesis, and formation mechanisms of such materials have been elaborated. Further, the superiority of the materials in view of few applications is well discussed. Finally, the importance of non-stoichiometry/Ovacs in metal oxides for various functional applications can be understood.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Zheng H, Ou JZ, Strano MS et al (2011) Nanostructured tungsten oxide–properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    Article  CAS  Google Scholar 

  2. Bandi S, Vidyasagar D, Adil S et al (2020) Crystallite size induced bandgap tuning in WO3 derived from nanocrystalline tungsten. Scr Mater 176:47–52. https://doi.org/10.1016/j.scriptamat.2019.09.032

    Article  CAS  Google Scholar 

  3. Khoo E, Lee PS, Ma J (2010) Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application. J Eur Ceram Soc 30:1139–1144. https://doi.org/10.1016/j.jeurceramsoc.2009.05.014

    Article  CAS  Google Scholar 

  4. Tilley RJD (1970) The formation of shear structures in sub-stoichiometric tungsten trioxide. Mater Res Bull 5:813–823. https://doi.org/10.1016/0025-5408(70)90032-2

    Article  CAS  Google Scholar 

  5. Hu R, Wu H, Hong K (2007) Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process. J Cryst Growth 306:395–399. https://doi.org/10.1016/j.jcrysgro.2007.05.007

    Article  CAS  Google Scholar 

  6. Bursill LA (1983) Structure of small defects in nonstoichiometric WO3−x. J Solid State Chem 48:256–271. https://doi.org/10.1016/0022-4596(83)90081-6

    Article  CAS  Google Scholar 

  7. Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J Appl Phys 108:093713. https://doi.org/10.1063/1.3505688

    Article  CAS  Google Scholar 

  8. Migas DB, Shaposhnikov VL, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 108:093714. https://doi.org/10.1063/1.3505689

    Article  CAS  Google Scholar 

  9. Wang F, Di Valentin C, Pacchioni G (2011) Semiconductor-to-metal transition in WO3−x: nature of the oxygen vacancy. Phys Rev B 84:073103. https://doi.org/10.1103/PhysRevB.84.073103

    Article  CAS  Google Scholar 

  10. Srivastav AK, Basu J, Kashyap S et al (2016) Crystallographic-shear-phase-driven W 18 O 49 nanowires growth on nanocrystalline W surfaces. Scr Mater 115:28–32. https://doi.org/10.1016/j.scriptamat.2015.12.037

    Article  CAS  Google Scholar 

  11. Zhang L, Wang H, Liu J et al (2020) Nonstoichiometric tungsten oxide: structure, synthesis, and applications. J Mater Sci Mater Electron 31:861–873. https://doi.org/10.1007/s10854-019-02596-z

    Article  CAS  Google Scholar 

  12. Cora F, Stachiotti MG, Catlow CRA, Rodriguez CO (1997) Transition metal oxide chemistry: electronic structure study of WO3, ReO3, and NaWO3. J Phys Chem B 101:3945–3952. https://doi.org/10.1021/Jp963724z

    Article  CAS  Google Scholar 

  13. Islam MA, Rondinelli JM, Spanier JE (2012) Normal mode determination of perovskite crystal structures with octahedral rotations: theory and applications. J Phys Condens Matter 25:175902. https://doi.org/10.1088/0953-8984/25/17/175902

    Article  CAS  Google Scholar 

  14. Guo T, Yao M-S, Lin Y-H, Nan C-W (2015) A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 17:3551–3585. https://doi.org/10.1039/C5CE00034C

    Article  CAS  Google Scholar 

  15. Tanisaki S (1960) On the transition of tungsten trioxide below room temperature. J Phys Soc Japan 15:566–573. https://doi.org/10.1143/JPSJ.15.566

    Article  CAS  Google Scholar 

  16. Loopstra BO, Rietveld HM (1969) Further refinement of the structure of WO 3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 25:1420–1421. https://doi.org/10.1107/S0567740869004146

    Article  CAS  Google Scholar 

  17. Woodward PM, Sleight AW, Vogt T (1997) Ferroelectric tungsten trioxide. J Solid State Chem 131:9–17. https://doi.org/10.1006/jssc.1997.7268

    Article  CAS  Google Scholar 

  18. Polaczek A, Pekala M, Obuszko Z (1994) Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. J Phys Condens Matter 6:7909–7919. https://doi.org/10.1088/0953-8984/6/39/011

    Article  CAS  Google Scholar 

  19. Allpress JG, Tilley RJD, Sienko MJ (1971) Examination of substoichiometric WO3 crystals by electron microscopy. J Solid State Chem 3:440–451. https://doi.org/10.1016/0022-4596(71)90083-1

    Article  CAS  Google Scholar 

  20. Iijima S (1975) High-resolution electron microscopy of crystallographic shear structures in tungsten oxides. J Solid State Chem 14:52–65. https://doi.org/10.1016/0022-4596(75)90361-8

    Article  CAS  Google Scholar 

  21. Sundberg M, Tilley RJD (1974) An electron microscope study of some nonstoichiometric oxides. J Solid State Chem 11:150–160. https://doi.org/10.1016/0022-4596(74)90110-8

    Article  CAS  Google Scholar 

  22. Tilley RJD (1995) The crystal chemistry of the higher tungsten oxides. Chem Non-Sag Tungsten 13:93–109. https://doi.org/10.1016/B978-0-08-042676-1.50012-9

    Article  CAS  Google Scholar 

  23. Smith AM, Kast MG, Nail BA et al (2014) A planar-defect-driven growth mechanism of oxygen deficient tungsten oxide nanowires. J Mater Chem A 2:6121–6129. https://doi.org/10.1039/C3TA14163B

    Article  CAS  Google Scholar 

  24. Magnéli A (1964) Informal Proc. Buhl Intern. Conf. Mater. Pittsburgh. pp. 109–122

  25. Sundbeg M (1976) The crystal and defect structures of W25O73, a member of the homologous series WnO3n-2. Acta Cryst B 32:2144–2149. https://doi.org/10.1107/S0567740876007280  

    Article  Google Scholar 

  26. Van Landuyt J (1974) Shear structures and crystallographic shear propagation. Le J Phys Colloq 35:53–63. https://doi.org/10.1051/jphyscol:1974704

    Article  Google Scholar 

  27. Gadó P (1965) X-ray powder diffraction study of the WO3⇌W20O58 shear transformation. Acta Phys Acad Sci Hungaricae 18:111–117. https://doi.org/10.1007/BF03157982

    Article  Google Scholar 

  28. Wadsley AD, Andersson S (1966) Crystallographic shear and diffusion paths in certain higher oxides of niobium, tungsten, molybdenum and titanium. Nature 211:581–583. https://doi.org/10.1038/211581a0

    Article  Google Scholar 

  29. Anderson JS, Hyde BG (1967) On the possible role of dislocations in generating ordered and disordered shear structures. J Phys Chem Solids 28:1393–1408. https://doi.org/10.1016/0022-3697(67)90268-5

    Article  CAS  Google Scholar 

  30. Van Landuyt J, Amelinckx S (1973) On the generation mechanism for shear planes in shear structures. J Solid State Chem 6:222–229. https://doi.org/10.1016/0022-4596(73)90185-0

    Article  Google Scholar 

  31. Pickering R, Tilley RJD (1976) An electron microscope study of tungsten oxides in the composition range WO2.90–WO2.72. J Solid State Chem 16:247–255. https://doi.org/10.1016/0022-4596(76)90039-6

    Article  CAS  Google Scholar 

  32. Dobson MM, Tilley RJD (1988) A new pseudo–binary tungsten oxide, W17O47. Acta Crystallogr Sect B 44:474–480. https://doi.org/10.1107/S0108768188004380

    Article  Google Scholar 

  33. Booth J, Ekström T, Iguchi E, Tilley RJD (1982) Notes on phases occurring in the binary tungsten-oxygen system. J Solid State Chem 41:293–307. https://doi.org/10.1016/0022-4596(82)90149-9

    Article  CAS  Google Scholar 

  34. Lundberg M, Sundberg M, Magnéli A (1982) The “pentagonal column” as a building unit in crystal and defect structures of some groups of transition metal compounds. J Solid State Chem 44:32–40. https://doi.org/10.1016/0022-4596(82)90398-X

    Article  CAS  Google Scholar 

  35. Su C, Lin C, Cheng C (2005) A modified plasma arc gas condensation technique to synthesize nanocrystalline tungsten oxide powders. Mater Trans 46:1016–1020. https://doi.org/10.2320/matertrans.46.1016

    Article  CAS  Google Scholar 

  36. Dellasega D, Pietralunga SM, Pezzoli A et al (2015) Tungsten oxide nanowires grown on amorphous-like tungsten films. Nanotechnology 26:365601. https://doi.org/10.1088/0957-4484/26/36/365601

    Article  CAS  Google Scholar 

  37. Seelaboyina R (2016) Tungsten oxide nanowire synthesis from amorphous-like tungsten films. Nanotechnology 27:112502. https://doi.org/10.1088/0957-4484/27/11/112502

    Article  CAS  Google Scholar 

  38. Yu HK, Lee J (2015) Growth mechanism of metal-oxide nanowires synthesized by electron beam evaporation: a self-catalytic vapor-liquid-solid process. Sci Rep 4:6589. https://doi.org/10.1038/srep06589

    Article  CAS  Google Scholar 

  39. Chen C-H, Wang S, Ko R et al (2006) The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films. Nanotechnology 17:217–223. https://doi.org/10.1088/0957-4484/17/1/036

    Article  CAS  Google Scholar 

  40. Jin YZ, Zhu YQ, Whitby RLD et al (2004) Simple approaches to quality large-scale tungsten oxide nanoneedles. J Phys Chem B 108:15572–15577. https://doi.org/10.1021/jp048596q

    Article  CAS  Google Scholar 

  41. Gu G, Zheng B, Han WQ et al (2002) Tungsten oxide nanowires on tungsten. Nano Lett 2:849–851. https://doi.org/10.1021/nl025618g

    Article  CAS  Google Scholar 

  42. Shen Z, Peng Z, Zhao Z, Fu X (2018) Nonlinear current-voltage characteristics of WO3-x nano-/micro-rods. Solid State Sci 78:126–132. https://doi.org/10.1016/j.solidstatesciences.2018.03.002

    Article  CAS  Google Scholar 

  43. Yu W, Shen Z, Peng F et al (2019) Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO 3–x. RSC Adv 9:7723–7728. https://doi.org/10.1039/C9RA00116F

    Article  CAS  Google Scholar 

  44. Qian J, Peng Z, Shen Z et al (2016) Positive impedance humidity sensors via single-component materials. Sci Rep 6:25574. https://doi.org/10.1038/srep25574

    Article  CAS  Google Scholar 

  45. Shi S, Xue X, Feng P et al (2008) Low-temperature synthesis and electrical transport properties of W18O49 nanowires. J Cryst Growth 310:462–466. https://doi.org/10.1016/j.jcrysgro.2007.10.038

    Article  CAS  Google Scholar 

  46. Zhou J, Gong L, Deng SZ et al (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87:223108. https://doi.org/10.1063/1.2136006

    Article  CAS  Google Scholar 

  47. Chi L, Xu N, Deng S et al (2006) An approach for synthesizing various types of tungsten oxide nanostructure. Nanotechnology 17:5590–5595. https://doi.org/10.1088/0957-4484/17/22/011

    Article  CAS  Google Scholar 

  48. Hong K, Xie M, Wu H (2006) Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 17:4830–4833. https://doi.org/10.1088/0957-4484/17/19/008

    Article  CAS  Google Scholar 

  49. Senthil K, Yong K (2007) Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing. Nanotechnology 18:395604. https://doi.org/10.1088/0957-4484/18/39/395604

    Article  CAS  Google Scholar 

  50. Luo JY, Chen F, Cao Z et al (2015) Complex three-dimensional tungsten oxide nanowire networks: controllable synthesis and growth mechanism. CrystEngComm 17:889–894. https://doi.org/10.1039/C4CE01715C

    Article  CAS  Google Scholar 

  51. Cheong FC, Varghese B, Zhu Y et al (2007) WO3–x Nanorods synthesized on a thermal hot plate. J Phys Chem C 111:17193–17199. https://doi.org/10.1021/jp074569z

    Article  CAS  Google Scholar 

  52. Kojima Y, Kasuya K, Nagato K et al (2008) Solid-phase growth mechanism of tungsten oxide nanowires synthesized on sputtered tungsten film. J Vac Sci Technol B Microelectron Nanom Struct 26:1942–1947. https://doi.org/10.1116/1.2990783

    Article  CAS  Google Scholar 

  53. Qin Y, Xie W, Liu Y, Ye Z (2016) Thermal-oxidative growth of aligned W18O49 nanowire arrays for high performance gas sensor. Sens Actuators B Chem 223:487–495. https://doi.org/10.1016/j.snb.2015.09.113

    Article  CAS  Google Scholar 

  54. Spanu D, Recchia S, Schmuki P, Altomare M (2020) Thermal-oxidative growth of substoichiometric WO3–x nanowires at mild conditions. Phys status solidi Rapid Res Lett 14:2000235. https://doi.org/10.1002/pssr.202000235

    Article  CAS  Google Scholar 

  55. Zhu L, Zhang Z, Ke X et al (2018) WO2 triggered nucleation and growth of ultra-long W18O49 structures, from nanobundles to single-crystalline microrod. Acta Mater 148:55–62. https://doi.org/10.1016/j.actamat.2018.01.032

    Article  CAS  Google Scholar 

  56. Pu W, Song Z, Yan J et al (2019) Preparation of oxygen-deficient 2D WO3−x nanoplates and their adsorption behaviors for organic pollutants: equilibrium and kinetics modeling. J Mater Sci 54:12463–12475. https://doi.org/10.1007/s10853-019-03780-6

    Article  CAS  Google Scholar 

  57. Hong K, Xie M, Hu R, Wu H (2007) Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl Phys Lett 90:173121. https://doi.org/10.1063/1.2734175

    Article  CAS  Google Scholar 

  58. Hong K, Xie M, Hu R, Wu H (2008) Diameter control of tungsten oxide nanowires as grown by thermal evaporation. Nanotechnology 19:085604. https://doi.org/10.1088/0957-4484/19/8/085604

    Article  CAS  Google Scholar 

  59. Chi LF, Deng SZ, Xu NS et al (2009) The study of optimizing growth conditions for improving field emission property of W18O49 nanorod arrays. J Phys Conf Ser 188:012021. https://doi.org/10.1088/1742-6596/188/1/012021

    Article  CAS  Google Scholar 

  60. Van Hieu N, Van Vuong H, Van Duy N, Hoa ND (2012) A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor application. Sens Actuators B Chem 171–172:760–768. https://doi.org/10.1016/j.snb.2012.05.069

    Article  CAS  Google Scholar 

  61. Vaddiraju S, Chandrasekaran H, Sunkara MK (2003) Vapor Phase synthesis of tungsten nanowires. J Am Chem Soc 125:10792–10793. https://doi.org/10.1021/ja035868e

    Article  CAS  Google Scholar 

  62. Thangala J, Vaddiraju S, Bogale R et al (2007) Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3:890–896. https://doi.org/10.1002/smll.200600689

    Article  CAS  Google Scholar 

  63. Thangala J, Vaddiraju S, Malhotra S et al (2009) A hot-wire chemical vapor deposition (HWCVD) method for metal oxide and their alloy nanowire arrays. Thin Solid Films 517:3600–3605. https://doi.org/10.1016/j.tsf.2009.01.051

    Article  CAS  Google Scholar 

  64. Hsieh YT, Chen US, Hsueh SH et al (2011) Rapid formation of tungsten oxide nanobundles with controllable morphology. Appl Surf Sci 257:3504–3509. https://doi.org/10.1016/j.apsusc.2010.11.063

    Article  CAS  Google Scholar 

  65. Devan RS, Patil RA, Lin J, Ma Y (2012) One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370. https://doi.org/10.1002/adfm.201201008

    Article  CAS  Google Scholar 

  66. Bandi S, Naga Suresh N, Bhoyar T, Srivastav AK (2020) WO3.1/3H2O nanorods/nanoplates: growth mechanism and CO2 uptake. Materialia 14:100943. https://doi.org/10.1016/j.mtla.2020.100943

    Article  CAS  Google Scholar 

  67. Sun S, Zhao Y, Xia Y et al (2008) Bundled tungsten oxide nanowires under thermal processing. Nanotechnology 19:305709. https://doi.org/10.1088/0957-4484/19/30/305709

    Article  CAS  Google Scholar 

  68. Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686. https://doi.org/10.1111/j.1551-2916.2005.00341.x

    Article  CAS  Google Scholar 

  69. Lee K, Seo WS, Park JT (2003) Synthesis and optical properties of colloidal tungsten oxide nanorods. J Am Chem Soc 125:3408–3409. https://doi.org/10.1021/ja034011e

    Article  CAS  Google Scholar 

  70. Xu X, Fang G, Shang J et al (2020) LSPR-excited obvious hydrogen yield enhancement for TiO2:Er3+, Yb3+@W18O49 quasi-core/shell heterostructure. J Mater Sci 55:2958–2966. https://doi.org/10.1007/s10853-019-04168-2

    Article  CAS  Google Scholar 

  71. Rout CS, Govindaraj A, Rao CNR (2006) High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires. J Mater Chem 16:3936–3941. https://doi.org/10.1039/b607012b

    Article  CAS  Google Scholar 

  72. Zhao YM, Hu WB, Xia YD et al (2007) Preparation and characterization of tungsten oxynitride nanowires. J Mater Chem 17:4436–4440. https://doi.org/10.1039/b709486h

    Article  CAS  Google Scholar 

  73. Zhao YM, Zhu YQ (2009) Room temperature ammonia sensing properties of W18O49 nanowires. Sens Actuators B Chem 137:27–31. https://doi.org/10.1016/j.snb.2009.01.004

    Article  CAS  Google Scholar 

  74. Xi G, Ouyang S, Li P et al (2012) Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chemie Int Ed 51:2395–2399. https://doi.org/10.1002/anie.201107681

    Article  CAS  Google Scholar 

  75. Lu C-H, Hon MH, Kuan C-Y, Leu I-C (2015) Controllable synthesis of W18O49 nanowire arrays and their application in electrochromic devices. J Mater Sci 50:5739–5745. https://doi.org/10.1007/s10853-015-9119-5

    Article  CAS  Google Scholar 

  76. Guo X, Qin X, Xue Z et al (2016) Morphology-controlled synthesis of WO2.72 nanostructures and their photocatalytic properties. RSC Adv 6:48537–48542. https://doi.org/10.1039/C6RA08551B

    Article  CAS  Google Scholar 

  77. Hai G, Huang J, Cao L et al (2017) Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J Alloys Compd 690:239–248. https://doi.org/10.1016/j.jallcom.2016.08.099

    Article  CAS  Google Scholar 

  78. Zhou H, Shi Y, Dong Q et al (2014) Surface oxygen vacancy-dependent electrocatalytic activity of W18O49 nanowires. J Phys Chem C 118:20100–20106. https://doi.org/10.1021/jp504368v

    Article  CAS  Google Scholar 

  79. Li K, Shao Y, Yan H et al (2018) Lattice-contraction triggered synchronous electrochromic actuator. Nat Commun 9:4798. https://doi.org/10.1038/s41467-018-07241-7

    Article  CAS  Google Scholar 

  80. Wang Y, Wang X, Xu Y et al (2017) Simultaneous synthesis of WO3−x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small 13:1–11. https://doi.org/10.1002/smll.201603689

    Article  CAS  Google Scholar 

  81. Sinha L, Shirage PM (2019) Surface oxygen vacancy formulated energy storage application: pseudocapacitor-battery trait of W18O49 nanorods. J Electrochem Soc 166:A3496–A3503. https://doi.org/10.1149/2.1251914jes

    Article  CAS  Google Scholar 

  82. Song K, Liu X, Tian C et al (2019) Oxygen defect-rich WO3-x nanostructures with high photocatalytic activity for dehydration of isopropyl alcohol to propylene. Surf Interfaces 14:245–250. https://doi.org/10.1016/j.surfin.2018.11.002

    Article  CAS  Google Scholar 

  83. Li J, Chen G, Yan J et al (2020) Solar-driven plasmonic tungsten oxides as catalyst enhancing ethanol dehydration for highly selective ethylene production. Appl Catal B Environ 264:118517. https://doi.org/10.1016/j.apcatb.2019.118517

    Article  CAS  Google Scholar 

  84. Cheng W, Ju Y, Payamyar P et al (2015) Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing. Angew Chemie Int Ed 54:340–344. https://doi.org/10.1002/anie.201408617

    Article  CAS  Google Scholar 

  85. Gao X, Xiao F, Yang C et al (2013) Hydrothermal fabrication of W18O49 nanowire networks with superior performance for water treatment. J Mater Chem A 1:5831–5834. https://doi.org/10.1039/c3ta10724h

    Article  CAS  Google Scholar 

  86. Lou XW, Zeng HC (2003) An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg Chem 42:6169–6171. https://doi.org/10.1021/ic034771q

    Article  CAS  Google Scholar 

  87. Bhuyan B, Paul B, Dhar SS, Vadivel S (2017) Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue. Mater Chem Phys 188:1–7. https://doi.org/10.1016/j.matchemphys.2016.12.035

    Article  CAS  Google Scholar 

  88. Guo C, Yin S, Huang Y et al (2011) Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 27:12172–12178. https://doi.org/10.1021/la202513q

    Article  CAS  Google Scholar 

  89. Chen P, Qin M, Chen Z et al (2016) Solution combustion synthesis of nanosized WOx: characterization, mechanism and excellent photocatalytic properties. RSC Adv 6:83101–83109. https://doi.org/10.1039/C6RA12375A

    Article  CAS  Google Scholar 

  90. Chen P, Qin M, Zhang D et al (2015) Combustion synthesis and excellent photocatalytic degradation properties of W18O49. CrystEngComm 17:5889–5894. https://doi.org/10.1039/C5CE00995B

    Article  CAS  Google Scholar 

  91. Salkar AV, Fernandes RX, Bhosale SV, Morajkar PP (2019) NH- And CH-substituted ureas as self-assembly directing motifs for facile synthesis and electrocapacitive applications of advanced WO3- x one-dimensional nanorods. ACS Appl Energy Mater 2:8724–8736. https://doi.org/10.1021/acsaem.9b01704

    Article  CAS  Google Scholar 

  92. Bao K, Zhang S, Ni P et al (2020) Convenient fabrication of carbon doped WO3−x ultrathin nanosheets for photocatalytic aerobic oxidation of amines. Catal Today 340:311–317. https://doi.org/10.1016/j.cattod.2018.11.013

    Article  CAS  Google Scholar 

  93. Zhu YQ, Hu W, Hsu WK et al (1999) Tungsten oxide tree-like structures. Chem Phys Lett 309:327–334. https://doi.org/10.1016/S0009-2614(99)00732-0

    Article  CAS  Google Scholar 

  94. Aǧıral A, Gardeniers JGE (2008) Synthesis and atmospheric pressure field emission operation of W 18 O 49 nanorods. J Phys Chem C 112:15183–15189. https://doi.org/10.1021/jp802756y

    Article  CAS  Google Scholar 

  95. Liu J, Zhao Y, Zhang Z (2003) Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods. J Phys Condens Matter 15:L453–L461. https://doi.org/10.1088/0953-8984/15/29/101

    Article  CAS  Google Scholar 

  96. Sahle W (1982) Electron microscopy studies of W18O49. 2. Defects and disorder introduced by partial oxidation. J Solid State Chem 45:334–342. https://doi.org/10.1016/0022-4596(82)90179-7

    Article  CAS  Google Scholar 

  97. Rothschild A, Sloan J, Tenne R (2000) Growth of WS2 nanotubes phases. J Am Chem Soc 122:5169–5179. https://doi.org/10.1021/ja994118v

    Article  CAS  Google Scholar 

  98. Fang Z, Jiao S, Kang Y et al (2017) Photothermal conversion of W18O49 with a tunable oxidation state. ChemistryOpen 6:261–265. https://doi.org/10.1002/open.201600149

    Article  CAS  Google Scholar 

  99. Zhou R, Lin X, Xue D et al (2018) Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures. Sens Actuators B Chem 260:900–907. https://doi.org/10.1016/j.snb.2018.01.104

    Article  CAS  Google Scholar 

  100. Shirke YM, Porel Mukherjee S (2017) Selective synthesis of WO3 and W18O49 nanostructures: ligand-free pH-dependent morphology-controlled self-assembly of hierarchical architectures from 1D nanostructure and sunlight-driven photocatalytic degradation. CrystEngComm 19:2096–2105. https://doi.org/10.1039/c6ce02518h

    Article  CAS  Google Scholar 

  101. Shengelaya A, Conder K, Müller KA (2020) Signatures of filamentary superconductivity up to 94 K in tungsten oxide WO2.90. J Supercond Nov Magn 33:301–306. https://doi.org/10.1007/s10948-019-05329-9

    Article  CAS  Google Scholar 

  102. Xiao L, Zhang S, Huang J (2014) Effective removal of organic dyes by tungstate oxide nanourchins. Powder Technol 258:297–303. https://doi.org/10.1016/j.powtec.2014.03.049

    Article  CAS  Google Scholar 

  103. Kojin F, Mori M, Noda Y, Inagaki M (2008) Preparation of carbon-coated W18O49 and its photoactivity under visible light. Appl Catal B Environ 78:202–209. https://doi.org/10.1016/j.apcatb.2007.09.025

    Article  CAS  Google Scholar 

  104. Shang Y, Cheng X, Shi R et al (2020) Synthesis and comparative investigation of adsorption capability and photocatalytic activities of WO3 and W18O49. Mater Sci Eng B Solid-State Mater Adv Technol 262:114724. https://doi.org/10.1016/j.mseb.2020.114724

    Article  CAS  Google Scholar 

  105. Hai G, Huang J, Jie Y et al (2020) Unveiling the relationships between (010) facets-orientation growth and photocatalytic activity in W18O49 nanowires. J Alloys Compd 820:153127. https://doi.org/10.1016/j.jallcom.2019.153127

    Article  CAS  Google Scholar 

  106. Paik T, Cargnello M, Gordon TR et al (2018) Photocatalytic hydrogen evolution from Substoichiometric colloidal WO3–x nanowires. ACS Energy Lett 3:1904–1910. https://doi.org/10.1021/acsenergylett.8b00925

    Article  CAS  Google Scholar 

  107. Zhang X, Hao W, Tsang C-S et al (2019) Pseudocubic phase tungsten oxide as a photocatalyst for hydrogen evolution reaction. ACS Appl Energy Mater 2:8792–8800. https://doi.org/10.1021/acsaem.9b01790

    Article  CAS  Google Scholar 

  108. Sharma L, Kumar P, Halder A (2019) Phase and vacancy modulation in tungsten oxide: electrochemical hydrogen evolution. ChemElectroChem 6:3420–3428. https://doi.org/10.1002/celc.201900666

    Article  CAS  Google Scholar 

  109. Wang L, Xu X, Wu S, Cao F (2018) Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H2 production. Catal Sci Technol 8:1366–1374. https://doi.org/10.1039/c7cy02572f

    Article  CAS  Google Scholar 

  110. Li X, Yan Y, Jiang Y et al (2019) Ultra-small Rh nanoparticles supported on WO3−x nanowires as efficient catalysts for visible-light-enhanced hydrogen evolution from ammonia borane. Nanoscale Adv 1:3941–3947. https://doi.org/10.1039/C9NA00424F

    Article  CAS  Google Scholar 

  111. Bai H, Su N, Li W et al (2013) W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. J Mater Chem A 1:6125–6129. https://doi.org/10.1039/c3ta10835j

    Article  CAS  Google Scholar 

  112. Li Y, Yan P, Chen J et al (2019) High-efficiency electrocatalyst for N2 conversion to NH3 based on Au nanoparticles loaded on defective WO3−x. Chem Commun 55:13307–13310. https://doi.org/10.1039/C9CC06550D

    Article  CAS  Google Scholar 

  113. Zhang N, Jalil A, Wu D et al (2018) Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J Am Chem Soc 140:9434–9443. https://doi.org/10.1021/jacs.8b02076

    Article  CAS  Google Scholar 

  114. Tong Y, Guo H, Liu D et al (2020) Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew Chemie Int Ed 59:7356–7361. https://doi.org/10.1002/anie.202002029

    Article  CAS  Google Scholar 

  115. Gies M, Michel F, Lupó C et al (2021) Electrochromic switching of tungsten oxide films grown by reactive ion-beam sputter deposition. J Mater Sci 56:615–628. https://doi.org/10.1007/s10853-020-05321-y

    Article  CAS  Google Scholar 

  116. Balaji S, Djaoued Y, Albert A-S et al (2009) Construction and characterization of tunable meso/macroporous tungsten oxide-based transmissive electrochromic devices. J Mater Sci 44:6608–6616. https://doi.org/10.1007/s10853-009-3575-8

    Article  CAS  Google Scholar 

  117. Kim D (2012) Effects of phase and morphology on the electrochromic performance of tungsten oxide nano-urchins. Sol Energy Mater Sol Cells 107:81–86. https://doi.org/10.1016/j.solmat.2012.07.030

    Article  CAS  Google Scholar 

  118. Liu BJ-W, Zheng J, Wang J-L et al (2013) Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano Lett 13:3589–3593. https://doi.org/10.1021/nl401304n

    Article  CAS  Google Scholar 

  119. Chang X, Sun S, Li Z et al (2011) Applied surface science assembly of tungsten oxide nanobundles and their electrochromic properties. Appl Surf Sci 257:5726–5730. https://doi.org/10.1016/j.apsusc.2011.01.085

    Article  CAS  Google Scholar 

  120. Xie J, Song B, Zhao G, Han G (2018) Citric acid induced W18O49 electrochromic films with enhanced optical modulation. Appl Phys Lett 112:231902. https://doi.org/10.1063/1.5026893

    Article  CAS  Google Scholar 

  121. Bao K, Mao W, Liu G et al (2017) Preparation and electrochemical characterization of ultrathin WO3−x/C nanosheets as anode materials in lithium ion batteries. Nano Res 10:1903–1911. https://doi.org/10.1007/s12274-016-1373-6

    Article  CAS  Google Scholar 

  122. Yoon S, Jo C, Noh SY et al (2011) Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Phys Chem Chem Phys 13:11060–11066. https://doi.org/10.1039/c1cp20940j

    Article  CAS  Google Scholar 

  123. Sun Y, Wang W, Qin J et al (2016) Oxygen vacancy-rich mesoporous W18O49 nanobelts with ultrahigh initial Coulombic efficiency toward high-performance lithium storage. Electrochim Acta 187:329–339. https://doi.org/10.1016/j.electacta.2015.11.064

    Article  CAS  Google Scholar 

  124. Lin H, Zhang S, Zhang T et al (2018) Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium-sulfur batteries. Adv Energy Mater 8:1801868. https://doi.org/10.1002/aenm.201801868

    Article  CAS  Google Scholar 

  125. Tu J, Lei H, Yu Z, Jiao S (2018) Ordered WO3–x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. Chem Commun 54:1343–1346. https://doi.org/10.1039/C7CC09376D

    Article  CAS  Google Scholar 

  126. Bayeh AW, Kabtamu DM, Chang Y-C et al (2019) Hydrogen-treated defect-rich W18O49 nanowire-modified graphite felt as high-performance electrode for vanadium redox flow battery. ACS Appl Energy Mater 2:2541–2551. https://doi.org/10.1021/acsaem.8b02158

    Article  CAS  Google Scholar 

  127. Huang Z, Li H, Li W et al (2020) Electrical and structural dual function of oxygen vacancies for promoting electrochemical capacitance in tungsten oxide. Small. https://doi.org/10.1002/smll.202004709

    Article  Google Scholar 

  128. Park S, Shim H-W, Lee CW et al (2016) High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes. Nano Res 9:633–643. https://doi.org/10.1007/s12274-015-0943-3

    Article  CAS  Google Scholar 

  129. Huo X, Shen W, Li R et al (2020) A novel heterostructure of oriented core/shell tungsten oxide nanorod arrays for electrochromo-pseudocapacitor. Scr Mater 174:1–5. https://doi.org/10.1016/j.scriptamat.2019.08.020

    Article  CAS  Google Scholar 

  130. Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028. https://doi.org/10.1016/j.jpowsour.2019.227028

    Article  CAS  Google Scholar 

  131. Jung J, Kim DH (2018) W18O49 nanowires assembled on carbon felt for application to supercapacitors. Appl Surf Sci 433:750–755. https://doi.org/10.1016/j.apsusc.2017.10.109

    Article  CAS  Google Scholar 

  132. Xu J, Li C, Chen L et al (2019) Anchoring carbon layers and oxygen vacancies endow WO3-x/C electrode with high specific capacity and rate performance for supercapacitors. RSC Adv 9:28793–28798. https://doi.org/10.1039/c9ra03886h

    Article  CAS  Google Scholar 

  133. Chen Z, Wang Q, Wang H et al (2013) Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv Mater 25:2095–2100. https://doi.org/10.1002/adma.201204616

    Article  CAS  Google Scholar 

  134. Zhang R, Song C, Kou M et al (2020) Sterilization of Escherichia coli by photothermal synergy of WO3–x/C nanosheet under infrared light irradiation. Environ Sci Technol 54:3691–3701. https://doi.org/10.1021/acs.est.9b07891

    Article  CAS  Google Scholar 

  135. Yang Z, Wang J, Liu S et al (2019) Tumor-Targeting W18O49 nanoparticles for dual-modality imaging and guided heat-shock-response-inhibited photothermal therapy in gastric cancer. Part Part Syst Charact 36:1900124. https://doi.org/10.1002/ppsc.201900124

    Article  CAS  Google Scholar 

  136. Kalluru P, Vankayala R, Chiang C-S, Hwang KC (2013) Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W 18 O 49 nanowires. Angew Chemie Int Ed 52:12332–12336. https://doi.org/10.1002/anie.201307358

    Article  CAS  Google Scholar 

  137. Harale NS, Dalavi DS, Mali SS et al (2018) Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO2 gas detection. J Mater Sci 53:6094–6105. https://doi.org/10.1007/s10853-017-1905-9

    Article  CAS  Google Scholar 

  138. Sun Y, Chen L, Wang Y et al (2017) Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J Mater Sci 52:1561–1572. https://doi.org/10.1007/s10853-016-0450-2

    Article  CAS  Google Scholar 

  139. Lu N, Yang C, Liu P, Su X (2019) Preparation of 2 nm tungsten oxide nanowires based on two-phase strategy and their ultra-sensitive NO2 gas sensing properties. J Colloid Interface Sci 557:311–317. https://doi.org/10.1016/j.jcis.2019.09.030

    Article  CAS  Google Scholar 

  140. Qin Y, Hu M, Zhang J (2010) Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures. Sens Actuators B Chem 150:339–345. https://doi.org/10.1016/j.snb.2010.06.063

    Article  CAS  Google Scholar 

  141. Qin Y, Li X, Wang F, Hu M (2011) Solvothermally synthesized tungsten oxide nanowires/nanorods for NO2 gas sensor applications. J Alloys Compd 509:8401–8406. https://doi.org/10.1016/j.jallcom.2011.05.100

    Article  CAS  Google Scholar 

  142. Wang D, Sun J, Cao X et al (2013) High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies. J Mater Chem A 1:8653–8657. https://doi.org/10.1039/c3ta11506b

    Article  CAS  Google Scholar 

  143. Qin Y, Zhang X, Wang Y, Liu Y (2017) Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon. Sens Actuators B Chem 240:477–486. https://doi.org/10.1016/j.snb.2016.09.005

    Article  CAS  Google Scholar 

  144. Yu SQ, Ling YH, Zhang J et al (2017) Efficient photoelectrochemical water splitting and impedance analysis of WO3−x nanoflake electrodes. Int J Hydrog Energy 42:20879–20887. https://doi.org/10.1016/j.ijhydene.2017.01.177

    Article  CAS  Google Scholar 

  145. Liu X, Zhou H, Pei S et al (2020) Oxygen-deficient WO3−x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination. Chem Eng J 381:122740. https://doi.org/10.1016/j.cej.2019.122740

    Article  CAS  Google Scholar 

  146. Li Y, Wang C, Zheng H et al (2017) Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Appl Surf Sci 391:654–661. https://doi.org/10.1016/j.apsusc.2016.07.042

    Article  CAS  Google Scholar 

  147. Huang S, Long Y, Ruan S, Zeng Y-J (2019) Enhanced photocatalytic CO2 reduction in defect-engineered z-scheme WO3–x /g-C3N4 heterostructures. ACS Omega 4:15593–15599. https://doi.org/10.1021/acsomega.9b01969

    Article  CAS  Google Scholar 

  148. Liu Q, Hu C, Wang X (2019) Hydrothermal synthesis of oxygen-deficiency tungsten oxide quantum dots with excellent photochromic reversibility. Appl Surf Sci 480:404–409. https://doi.org/10.1016/j.apsusc.2019.02.097

    Article  CAS  Google Scholar 

  149. Li N, Cao X, Li Y et al (2018) A plasmonic non-stoichiometric WO3−x homojunction with stabilizing surface plasmonic resonance for selective photochromic modulation. Chem Commun 54:5241–5244. https://doi.org/10.1039/C8CC02211A

    Article  CAS  Google Scholar 

  150. Zhou H, Shi Y, Dong Q et al (2014) Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. J Mater Chem A 2:4347–4354. https://doi.org/10.1039/C3TA14345G

    Article  CAS  Google Scholar 

  151. Liu Y, Yun S, Zhou X et al (2017) Intrinsic origin of superior catalytic properties of tungsten-based catalysts in dye-sensitized solar cells. Electrochim Acta 242:390–399. https://doi.org/10.1016/j.electacta.2017.04.176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work by the Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Government of India.

Funding

This study was funded by SERB-DST, Government of India (ECR/2016/001081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet K. Srivastav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandi, S., Srivastav, A.K. Review: Oxygen-deficient tungsten oxides. J Mater Sci 56, 6615–6644 (2021). https://doi.org/10.1007/s10853-020-05757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05757-2

Navigation