Skip to main content
Log in

Highly sensitive and selective dopamine sensor uses three-dimensional cobalt phosphide nanowire array

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The detection of dopamine is essential for the treatment and diagnosis of depression and other diseases. In this work, cobalt phosphide nanowire arrays grown on titanium mesh (CoP NWAs/TM) are prepared by two steps of hydrothermal and phosphating, and firstly used for the detection of dopamine. The electrochemical behavior of the CoP NWAs/TM was evaluated by amperometry and differential pulse voltammetry. Amperometric analysis reveals admirable parameters in neutral PBS: (a) a working potential of 0.30 V; (b) a wide linear range (1 μM ~ 3 mM); (c) a high sensitivity (3366 μA·mM−1·cm−2); (d) a low detection limit (3.56 × 10–4 mM). Moreover, the interference effect of the common interfering species and the stability were investigated. Further experiments show that the sensor could be successfully used to detect dopamine in human blood serum.

Graphical abstract

Highly sensitive and selective dopamine sensor uses three-dimensional cobalt phosphide nanowire array, which is the first experiment to apply Co-based transition metal phosphides for dopamine detection. The sensor based on cobalt phosphide nanowire array-electrode could be successfully used to detect dopamine in human blood serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hugo JO, David CG, Ernestina HG, Gerardo BM (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev 2016:9730467

    Google Scholar 

  2. Ding H, Guo WL, Zhou P, Su B (2020) Nanocage-confined electrochemiluminescence for the detection of dopamine released from living cells. Chem Commun 56:8249–8252

    Article  CAS  Google Scholar 

  3. Hannah S, Al-Hatmi M, Gray L, Corrigan DK (2020) Low-cost, thin-film, mass-manufacturable carbon electrodes for detection of the neurotransmitter dopamine. Bioelectrochemistry 133:107480

    Article  CAS  Google Scholar 

  4. Das R, Bora A, Giri PK (2020) Quantitative understanding of the ultra-sensitive and selective detection of dopamine using a graphene oxide/WS2 quantum dot hybrid. J Mater Chem C 8:7935–7946

    Article  CAS  Google Scholar 

  5. Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771

    Article  CAS  Google Scholar 

  6. Chang Y, Venton BJ (2020) Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection. Anal Methods 12:2893–2902

    Article  CAS  Google Scholar 

  7. Gao L, Ma JP, Zheng JB (2020) Solvothermal synthesis of Sb2S3-graphene oxide nanocomposite for electrochemical detection of dopamine. J Electrochem Soc 167:107503

    Article  CAS  Google Scholar 

  8. Badgaiyan RD (2014) Imaging dopamine neurotransmission in live human brain. Prog Brain Res 211:165–182

    Article  CAS  Google Scholar 

  9. Bucher ES, Wightman RM (2015) Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 8:239–261

    Article  CAS  Google Scholar 

  10. Hou XY, Huang W, Tong YK, Tian MM (2019) Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Microchim Acta 186:686

    Article  CAS  Google Scholar 

  11. Liu YB, He X, Ma PY, Huang YB, Li XL, Sun Y, Wang XH, Song DQ (2020) Fluorometric detection of dopamine based on 3-aminophenylboronic acid-functionalized AgInZnS QDs and cells imaging. Talanta 217:121081

    Article  CAS  Google Scholar 

  12. Zhang RX, Fan ZF (2020) Nitrogen-doped carbon quantum dots as a “turn off-on” fluorescence sensor based on the redox reaction mechanism for the sensitive detection of dopamine and alpha lipoic acid. J Photoch Photobio A 392:112438

    Article  CAS  Google Scholar 

  13. Schoening MJ, Jacobs M, Muck A, Knobbe DT, Wang J, Chatrathi M, Spillmann S (2005) Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sensor Actuat B-Chem 108:688–694

    Article  CAS  Google Scholar 

  14. Pandikumar A, Soon How GT, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA, Lim HN, Huang NM (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4:63296–63323

    Article  CAS  Google Scholar 

  15. Mercante LA, Pavinatto A, Iwaki LEO, Scagion VP, Zucolotto V, Oliveira ON, Mattoso LHC, Correa DS (2015) Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Inter 7:4784–4790

    Article  CAS  Google Scholar 

  16. Chen LY, Tang YH, Wang K, Liu CB, Luo SL (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  17. Rubio GR, Hickey DP, García MR, Rodriguez DM, Domínguez RMA, Minteer SD, Ornelas SN, García GA (2020) MoS2 nanostructured materials for electrode modification in the development of a laccase based amperometric biosensor for non-invasive dopamine detection. Microchem J 155:104792

    Article  Google Scholar 

  18. Selvaraju T, Ramaraj R (2005) Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications. J Electroanal Chem 585:290–300

    Article  CAS  Google Scholar 

  19. Tyagi P, Postetter D, Saragnese DL, Randall CL, Mirski A, Gracias DH (2009) Patternable nanowire sensors for electrochemical recording of dopamine. Anal Chem 81:9979–9984

    Article  CAS  Google Scholar 

  20. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  Google Scholar 

  21. Ma XY, Chao MY, Wang ZX (2012) Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Anal Methods 4:1687–1692

    Article  CAS  Google Scholar 

  22. Cecilia JA, Infantes MA, Rodríguez CE, Jiménez LA (2009) The influence of the support on the formation of Ni2P based catalysts by a new synthetic approach. Study of the catalytic activity in the hydrodesulfurization of dibenzothiophene. J Phys Chem C 113:17032–17044

    Article  CAS  Google Scholar 

  23. Li S, Hua MH, Yang Y, Huang W, Lin XH, Ci LJ, Lou J, Si PC (2019) Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. J Mater Chem A 7:17386–17399

    Article  CAS  Google Scholar 

  24. Chen T, Liu DN, Lu WB, Wang KY, Du G, Asiri AM, Sun XP (2016) Three-dimensional Ni2P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity. Anal Chem 88:7885–7889

    Article  CAS  Google Scholar 

  25. Zhang L, Peng J, Hong MF, Chen JQ, Liang RP, Qiu JD (2019) Cobalt phosphide nanowires for fluorometric detection and in-situ imaging of telomerase activity via hybridization chain reactions. Microchim Acta 186:309

    Article  Google Scholar 

  26. Tian JQ, Liu Q, Cheng NY, Asiri AM, Sun XP (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem 126:9731–9735

    Article  Google Scholar 

  27. Qiu SL, Xing WY, Mu XW, Feng XM, Ma C, Yuen RKK, Hu Y (2016) A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applications. ACS Appl Mater Inter 8:32528–32540

    Article  CAS  Google Scholar 

  28. Liu DN, Chen T, Zhu WX, Cui L, Asiri AM, Lu Q, Sun XP (2016) Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection. Nanotechnology 27:33LT01

    Article  Google Scholar 

  29. Liu YW, Cao XQ, Kong RM, Du G, Asiri AM, Lu Q, Sun XP (2017) Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing. J Mater Chem B 5:1901–1904

    Article  CAS  Google Scholar 

  30. Xiao LL, Xu RY, Wang F (2018) Facile synthesis of CoxP decorated porous carbon microspheres for ultrasensitive detection of 4-nitrophenol. Talanta 179:448–455

    Article  CAS  Google Scholar 

  31. Thakur N, Chaturvedi A, Mandal D, Nagaiah TC (2020) Ultrasensitive and highly selective detection of dopamine by a NiFeP based flexible electrochemical sensor. Chem Commun 56:8448–8451

    Article  CAS  Google Scholar 

  32. Tian JQ, Liu Q, Asiri AM, Sun XP (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590

    Article  CAS  Google Scholar 

  33. Chen Y, Liu XY, Zhang S, Yang LQ, Liu ML, Zhang YY, Yao SZ (2017) Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 231:677–685

    Article  CAS  Google Scholar 

  34. Lu ZW, Li YF, Liu T, Wang GT, Sun MM, Jiang YY, He H, Wang YY, Zou P, Wang XX, Zhao QB, Rao HB (2020) A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem Eng J 389:124417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21705103), the Applied Basic Research Project of Shanxi Province (No. 201801D221392), Scientific and Technological Innovation Projects in Shanxi Universities (No. 2019L0460), the Graduate Education Innovation Project of Shanxi Normal University (2019XBY019), the Graduate Education Innovation Project of Shanxi Province (No. 2019SY174), Collaborative Innovation Center for Shanxi Advanced Permanent Materials and Technology (2019-05), and the 1331 Engineering of Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbo Lu or Haishun Wu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Lu, W., Zhu, M. et al. Highly sensitive and selective dopamine sensor uses three-dimensional cobalt phosphide nanowire array. J Mater Sci 56, 6401–6410 (2021). https://doi.org/10.1007/s10853-020-05713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05713-0

Navigation