Skip to main content
Log in

Cobalt phosphide nanowires for fluorometric detection and in-situ imaging of telomerase activity via hybridization chain reactions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe cobalt phosphide (CoP) nanowires for use in sensitive fluorometric determination of the activity of the enzyme telomerase. A hybridization chain reaction (HCR) is applied to amplify the signal and carboxyfluorescein (FAM)-labelled hairpin probes (H1 and H2) are applied to match the telomeric DNA sequence. The CoP nanowires act as both the photoinduced electron transfer (PET) acceptor to induce fluorescence quenching, and also as an efficient probe carrier to facilitate telomerase imaging in living cells. The telomerase-triggered primer extension initiates an alternating hybridization reaction between H1 and H2. These result in the dissociation of FAM-labelled probes from CoP nanowires and thus an enhancement of the green fluorescence. The method is fairly simple and was applied to the detection of three types of cancer cells. The detection limit is as low as 7 cells (in case of HeLa cells). Conceivably, the method has a large potential in terms of inhibitor drug screening.

Schematic presentation of telomerase detection based on cobalt phosphide (CoP) nanowires and hybridization chain reaction (HCR). The telomerase-triggered primer extension can initiate the alternating hybridization reaction between carboxyfluorescein (FAM)-labelled hairpin probes (H1 and H2), and the generated long DNA duplex cannot be adsorbed on the CoP nanowires. This prevents the photoinduced electron transfer (PET) from FAM to CoP nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bryan TM, Cech TR (1999) Telomerase and the maintenance of chromosome ends. Curr Opin Cell Biol 11:318–324

    Article  CAS  Google Scholar 

  2. Cech TR (2000) Life at the end of the chromosome: telomeres and telomerase. Angew Chem Int Ed 39:34–43

    Article  CAS  Google Scholar 

  3. Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW (1996) Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 56:645–650

    CAS  PubMed  Google Scholar 

  4. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  Google Scholar 

  5. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  CAS  Google Scholar 

  6. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  CAS  Google Scholar 

  7. Cong Y, Shay JW (2008) Actions of human telomerase beyond telomeres. Cell Res 18:725–732

    Article  CAS  Google Scholar 

  8. Wang D, Guo R, Wei Y, Zhang Y, Zhao X, Xu Z (2018) Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of au nanorods. Biosens Bioelectron 122:247–253

    Article  CAS  Google Scholar 

  9. Yu T, Zhao W, Xu J-J, Chen H-Y (2018) A PCR-free colorimetric strategy for visualized assay of telomerase activity. Talanta 178:594–599

    Article  CAS  Google Scholar 

  10. Wang G, Wang H, Cao S, Xiang W, Li T, Yang M (2019) Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Microchim Acta 186:96–101

    Article  Google Scholar 

  11. Wang L, Meng T, Yu G, Wu S, Sun J, Jia H, Wang H, Yang X, Zhang Y (2019) A label-free electrochemical biosensor for ultra-sensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by au nanorods. Biosens Bioelectron 124:53–58

    Article  Google Scholar 

  12. Qian R, Ding L, Yan L, Lin M, Ju H (2014) A robust probe for lighting up intracellular telomerase via primer extension to open a nicked molecular beacon. J Am Chem Soc 136:8205–8208

    Article  CAS  Google Scholar 

  13. Xu Y, Zhang P, Wang Z, Lv S, Ding C (2018) Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchim Acta 185:198–204

    Article  Google Scholar 

  14. Zhuang Y, Huang F, Xu Q, Zhang M, Lou X, Xia F (2016) Facile, fast-responsive, and photostable imaging of telomerase activity in living cells with a fluorescence turn-on manner. Anal Chem 88:3289–3294

    Article  CAS  Google Scholar 

  15. Wang K, Li S, Liu Y, Jiang L, Zhang F, Wei Y, Zhang Y, Qi Z, Wang K, Liu S (2017) In situ detection and imaging of telomerase activity in cancer cell lines via disassembly of plasmonic core–satellites nanostructured probe. Anal Chem 89:7262–7268

    Article  CAS  Google Scholar 

  16. Qian G-S, Zhang T-T, Zhao W, Xu J-J, Chen H-Y (2017) Single-molecule imaging of telomerase activity via linear plasmon rulers. Chem Commun 53:4710–4713

    Article  CAS  Google Scholar 

  17. Kim NW, Wu F (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25:2595–2597

    Article  CAS  Google Scholar 

  18. Lee NY (2018) A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Microchim Acta 185:285–291

    Article  Google Scholar 

  19. Bi S, Ye J, Dong Y, Li H, Cao W (2016) Target-triggered cascade recycling amplification for label-free detection of microRNA and molecular logic operations. Chem Commun 52:402–405

    Article  CAS  Google Scholar 

  20. Bi S, Cui Y, Li L (2013) Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Anal Chim Acta 760:69–74

    Article  CAS  Google Scholar 

  21. Ma C, Liu H, Tian T, Song X, Yu J, Yan M (2016) A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction. Biosens Bioelectron 83:15–18

    Article  CAS  Google Scholar 

  22. Wang W-J, Li J-J, Rui K, Gai P-P, Zhang J-R, Zhu J-J (2015) Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem 87:3019–3026

    Article  CAS  Google Scholar 

  23. Hong M, Xu L, Xue Q, Li L, Tang B (2016) Fluorescence imaging of intracellular telomerase activity using enzyme-free signal amplification. Anal Chem 88:12177–12182

    Article  CAS  Google Scholar 

  24. Yang L, Liu D, Hao S, Qu F, Ge R, Ma Y, Du G, Asiri AM, Chen L, Sun X (2017) Topotactic conversion of α-Fe2O3 nanowires into FeP as a superior fluorosensor for nucleic acid detection: insights from experiment and theory. Anal Chem 89:2191–2195

    Article  CAS  Google Scholar 

  25. Tian J, Cheng N, Liu Q, Xing W, Sun X (2015) Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew Chem Int Ed 54:5493–5497

    Article  CAS  Google Scholar 

  26. Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed 53:12855–12859

    Article  CAS  Google Scholar 

  27. Tang C, Gan L, Zhang R, Lu W, Jiang X, Asir AM, Sun X, Wang J, Chen L (2016) Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett 16:6617–6621

    Article  CAS  Google Scholar 

  28. Jiang P, Liu Q, Sun X (2014) NiP2 Nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 6:13440–13445

    Article  CAS  Google Scholar 

  29. Tang C, Zhang R, Lu W, He L, Jiang X, Asiri AM, Sun X (2017) Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater 29:1602441–1602446

    Article  Google Scholar 

  30. Li Y, Malik MA, O'Brien P (2005) Synthesis of single-crystalline CoP nanowires by a one-pot metal-organic route. J Am Chem Soc 127:16020–16021

    Article  CAS  Google Scholar 

  31. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590

    Article  CAS  Google Scholar 

  32. Grosvenor AP, Wik SD, Cavell RG, Mar A (2005) Examination of the bonding in binary transition-metal monophosphides MP (M= Cr, Mn, Fe, co) by X-ray photoelectron spectroscopy. Inorg Chem 44:8988–8998

    Article  CAS  Google Scholar 

  33. Li H, Yang P, Chu D, Li H (2007) Selective maltose hydrogenation to maltitol on a ternary co–P–B amorphous catalyst and the synergistic effects of alloying B and P. Appl Catal a-Gen 325:34–40

    Article  CAS  Google Scholar 

  34. Sadava D, Whitlock E, Kane SE (2007) The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Bio Res Commun 360:233–237

    Article  CAS  Google Scholar 

  35. Su D, Huang X, Dong C, Ren J (2018) Quantitative determination of telomerase activity by combining fluorescence correlation spectroscopy with telomerase repeat amplification protocol. Anal Chem 90:1006–1013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the supports from the National Natural Science Foundation of China (21775065, 21675078 and 21105044), Jiangxi Province Natural Science Foundation (20165BCB18022, 20171BAB203016 and 2018ACB21008) and National Students' innovation and entrepreneurship training program (201701075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ding Qiu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.75 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Peng, J., Hong, MF. et al. Cobalt phosphide nanowires for fluorometric detection and in-situ imaging of telomerase activity via hybridization chain reactions. Microchim Acta 186, 309 (2019). https://doi.org/10.1007/s00604-019-3391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3391-z

Keywords

Navigation