Skip to main content
Log in

Biomolecules induce the synthesis of hollow hierarchical mesoporous structured hydroxyapatite microflowers: application in macromolecule drug delivery

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel hollow HAp microflower with hierarchical mesoporous structure was designed through biomolecules induction and explored as macromolecular drug carrier. It is found that biomolecules play a vital role in the formation of hollow morphology and the construction of hierarchical mesoporous structure, which could remarkably improve the specific surface area of microflowers. Moreover, the microflowers display a higher drug loading capacity (263 ± 7.2 mg/g), sustained release behavior and exhibit a better biocompatibility in the cytotoxicity test, suggesting the microflowers can be regarded as a promising candidate in macromolecular drug delivery fields. In addition, it is proved that the excellent drug delivery property is attributed not only to the interaction among carrier, drug and medium environment but also to the pore structure and morphology of carrier. Over all, the work represents a versatile, new route toward the preparation of hollow HAp-based macromolecular drug carrier with hierarchical mesoporous structural features and provides new insight into the optimization of macromolecular drug delivery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR (2019) Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 92:1–18. https://doi.org/10.1016/j.actbio.2019.05.018

    Article  CAS  Google Scholar 

  2. Fu L-H, Hu Y-R, Qi C, He T, Jiang S, Jiang C, He J, Qu J, Lin J, Huang P (2019) Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano. https://doi.org/10.1021/acsnano.9b05836

    Article  Google Scholar 

  3. Chen S, Shi Y, Luo Y, Ma J (2019) Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloid Surf B Biointerfaces 179:121–127. https://doi.org/10.1016/j.colsurfb.2019.03.063

    Article  CAS  Google Scholar 

  4. Shao D, Li M, Wang Z, Zheng X, Lao Y-H, Chang Z, Zhang F, Lu M, Yue J, Hu H, Yan H, Chen L, Dong W-f, Leong KW (2018) Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv Mater 30:1801198. https://doi.org/10.1002/adma.201801198

    Article  CAS  Google Scholar 

  5. Liu W, Zhang X, Zhou L, Shang L, Su Z (2019) Reduced graphene oxide (rGO) hybridized hydrogel as a near-infrared (NIR)/pH dual-responsive platform for combined chemo-photothermal therapy. J Colloid Interface Sci 536:160–170. https://doi.org/10.1016/j.jcis.2018.10.050

    Article  CAS  Google Scholar 

  6. Kim WJ, Kim BS, Cho YD, Yoon WJ, Baek JH, Woo KM, Ryoo HM (2017) Fibroin particle-supported cationic lipid layers for highly efficient intracellular protein delivery. Biomaterials 122:154–162. https://doi.org/10.1016/j.biomaterials.2017.01.019

    Article  CAS  Google Scholar 

  7. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421. https://doi.org/10.1016/j.actbio.2011.11.017

    Article  CAS  Google Scholar 

  8. Mondal S, Dorozhkin SV, Pal U (2018) Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip Rev Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1504

    Article  Google Scholar 

  9. He ZH, Sun SL, Deng CL (2020) Effect of hydroxyapatite coating surface morphology on adsorption behavior of differently charged proteins. J Bionic Eng 17:345–356. https://doi.org/10.1007/s42235-020-0028-1

    Article  Google Scholar 

  10. Kojima S, Nakamura H, Lee S, Nagata F, Kato K (2019) Hydroxyapatite formation on self-assembling peptides with differing secondary structures and their selective adsorption for proteins. Int J Mole Sci 20:4650. https://doi.org/10.3390/ijms20184650

    Article  CAS  Google Scholar 

  11. Ibrahim M, Labaki M, Giraudon J-M, Lamonier J-F (2020) Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J Hazard Mater 383:121139. https://doi.org/10.1016/j.jhazmat.2019.121139

    Article  CAS  Google Scholar 

  12. Yang MS, Tian C, Han CR, Zhao GZ (2018) Hierarchical self-assembled hollow hydroxyapatite flower microspheres containing terpene functional groups for efficient drug loading and pH-responsive drug release. Ceram Int 44:20913–20920. https://doi.org/10.1016/j.ceramint.2018.05.264

    Article  CAS  Google Scholar 

  13. Xu Y, An L, Chen L, Cao L, Zeng D, Wang G (2018) A facile chemical route to synthesize Zn doped hydroxyapatite nanorods for protein drug delivery. Mater Chem Phys 214:359–363. https://doi.org/10.1016/j.matchemphys.2018.04.117

    Article  CAS  Google Scholar 

  14. Kim J-J, Lee J-Y, Kim H-W (2016) Hydroxyapatite mineral tubes developed for the loading and release of biological proteins. Mater Lett 167:170–174. https://doi.org/10.1016/j.matlet.2015.12.128

    Article  CAS  Google Scholar 

  15. Lai W, Chen C, Ren X, Lee IS, Jiang G, Kong X (2016) Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater Sci Eng C Mater Biol Appl 62:166–172. https://doi.org/10.1016/j.msec.2016.01.055

    Article  CAS  Google Scholar 

  16. Xiao Q, Zhou K, Chen C, Jiang M, Zhang Y, Luo H, Zhang D (2016) Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method. Mater Sci Eng C Mater Biol Appl 69:1068–1074. https://doi.org/10.1016/j.msec.2016.07.082

    Article  CAS  Google Scholar 

  17. Mondal S, Hoang G, Manivasagan P, Kim H, Oh J (2019) Nanostructured hollow hydroxyapatite fabrication by carbon templating for enhanced drug delivery and biomedical applications. Ceram Int 45:17081–17093. https://doi.org/10.1016/j.ceramint.2019.05.260

    Article  CAS  Google Scholar 

  18. Li R, Chen K, Li G, Han G, Yu S, Yao J, Cai Y (2016) Structure design and fabrication of porous hydroxyapatite microspheres for cell delivery. J Mol Struct 1120:34–41. https://doi.org/10.1016/j.molstruc.2016.05.017

    Article  CAS  Google Scholar 

  19. Kang Y, Sun W, Li S, Li M, Fan J, Du J, Liang X-J, Peng X (2019) Oligo hyaluronan-coated silica/hydroxyapatite degradable nanoparticles for targeted cancer treatment. Adv Sci. https://doi.org/10.1002/advs.201900716

    Article  Google Scholar 

  20. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23:2322–2328. https://doi.org/10.1002/adfm.201202764

    Article  CAS  Google Scholar 

  21. Cao X, Wang G, Wang K, Guo L, Cao Y, Cao X, Yang Y (2020) Organic phosphorous and calcium source induce the synthesis of yolk-shell structured microspheres of calcium phosphate with high-specific surface area: application in HEL adsorption. Nanoscale Res Lett 15:69. https://doi.org/10.1186/s11671-020-03298-w

    Article  CAS  Google Scholar 

  22. Peng H-L, Zhang J-B, Zhang J-Y, Zhong F-Y, Wu P-K, Huang K, Fan J-P, Liu F (2019) Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture. Chem Eng J 359:1159–1165. https://doi.org/10.1016/j.cej.2018.11.064

    Article  CAS  Google Scholar 

  23. Zhao J, Xie P, Ye C, Wu C, Han W, Huang M, Wang S, Chen H (2018) Outside-in synthesis of mesoporous silica/molybdenum disulfide nanoparticles for antitumor application. Chem Eng J 351:157–168. https://doi.org/10.1016/j.cej.2018.06.101

    Article  CAS  Google Scholar 

  24. Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 26:3176–3205. https://doi.org/10.1002/adma.201305319

    Article  CAS  Google Scholar 

  25. Poostforooshan J, Belbekhouche S, Shaban M, Alphonse V, Habert D, Bousserrhine N, Courty J, Weber AP (2020) Aerosol-assisted synthesis of tailor-made hollow mesoporous silica microspheres for controlled release of antibacterial and anticancer agents. ACS Appl Mater Interfaces 12:6885–6898. https://doi.org/10.1021/acsami.9b20510

    Article  CAS  Google Scholar 

  26. Huang X, Meng X, Tang F, Li L, Chen D, Liu H, Zhang Y, Ren J (2008) Mesoporous magnetic hollow nanoparticles-protein carriers for lysosome escaping and cytosolic delivery. Nanotechnology 19:445101. https://doi.org/10.1088/0957-4484/19/44/445101

    Article  CAS  Google Scholar 

  27. Gu X, Liu Y, Chen G, Wang H, Shao C, Chen Z, Lu P, Zhao Y (2018) Mesoporous colloidal photonic crystal particles for intelligent drug delivery. ACS Appl Mater Interfaces 10:33936–33944. https://doi.org/10.1021/acsami.8b11175

    Article  CAS  Google Scholar 

  28. Wang Y, Kong A, Chen X, Lin Q, Feng P (2015) Efficient oxygen electroreduction: hierarchical porous fe–n-doped hollow carbon nanoshells. ACS Catal 5:3887–3893. https://doi.org/10.1021/acscatal.5b00530

    Article  CAS  Google Scholar 

  29. Li Y, Li N, Pan W, Yu Z, Yang L, Tang B (2017) Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces 9:2123–2129. https://doi.org/10.1021/acsami.6b13876

    Article  CAS  Google Scholar 

  30. Hadipour Moghaddam SP, Yazdimamaghani M, Ghandehari H (2018) Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. J Control Release 282:62–75. https://doi.org/10.1016/j.jconrel.2018.04.032

    Article  CAS  Google Scholar 

  31. Zhang M, Zhang L, Chen Y, Li L, Su Z, Wang C (2017) Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem Sci 8:8067–8077. https://doi.org/10.1039/c7sc03521g

    Article  CAS  Google Scholar 

  32. Qi C, Musetti S, Fu L-H, Zhu Y-J, Huang L (2019) Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 48:2698–2737. https://doi.org/10.1039/c8cs00489g

    Article  CAS  Google Scholar 

  33. Ren X, Sun Z, Ma X, Wang Y, Cui X, Yi Z, Sun X, Guo B, Li X (2018) Alginate-mediated mineralization for ultrafine hydroxyapatite hybrid nanoparticles. Langmuir 34:6797–6805. https://doi.org/10.1021/acs.langmuir.8b00151

    Article  CAS  Google Scholar 

  34. Park SY, Kim K-I, Park SP, Lee JH, Jung HS (2016) Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres. Cryst Growth Des 16:4318–4326. https://doi.org/10.1021/acs.cgd.6b00420

    Article  CAS  Google Scholar 

  35. Khalifehzadeh R, Arami H (2019) DNA-templated strontium-doped calcium phosphate nanoparticles for gene delivery in bone cells. ACS Biomater Sci Eng 5:3201–3211. https://doi.org/10.1021/acsbiomaterials.8b01587

    Article  CAS  Google Scholar 

  36. Zhou H, Yang Y, Yang M, Wang W, Bi Y (2018) Synthesis of mesoporous hydroxyapatite via a vitamin C templating hydrothermal route. Mater Lett 218:52–55. https://doi.org/10.1016/j.matlet.2018.01.154

    Article  CAS  Google Scholar 

  37. Das P, Jana NR (2016) Length-controlled synthesis of calcium phosphate nanorod and nanowire and application in intracellular protein delivery. ACS Appl Mater Interfaces 8:8710–8720. https://doi.org/10.1021/acsami.6b01667

    Article  CAS  Google Scholar 

  38. Yu Y-D, Zhu Y-J, Qi C, Wu J (2017) Solvothermal synthesis of hydroxyapatite with various morphologies using trimethyl phosphate as organic phosphorus source. Mater Lett 193:165–168. https://doi.org/10.1016/j.matlet.2017.01.124

    Article  CAS  Google Scholar 

  39. Yu W, Sun T-W, Qi C, Ding Z, Zhao H, Chen F, Chen D, Zhu Y-J, Shi Z, He Y (2017) Strontium-doped amorphous calcium phosphate porous microspheres synthesized through a microwave-hydrothermal method using fructose 1,6-bisphosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. ACS Appl Mater Interfaces 9:3306–3317. https://doi.org/10.1021/acsami.6b12325

    Article  CAS  Google Scholar 

  40. Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341. https://doi.org/10.1002/chem.201203886

    Article  CAS  Google Scholar 

  41. Olsen T, Cui G, Goll R, Husebekk A, Florholmen J (2009) Infliximab therapy decreases the levels of TNF- and IFN-mRNA in colonic mucosa of ulcerative colitis. Scand J Gastroenterol 44:727–735. https://doi.org/10.1080/00365520902803507

    Article  CAS  Google Scholar 

  42. Fuhrmann K, Fuhrmann G (2017) Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr Opin Colloid Interface Sci 31:67–74. https://doi.org/10.1016/j.cocis.2017.07.002

    Article  CAS  Google Scholar 

  43. Tang QL, Zhu YJ, Wu J, Chen F, Cao SW (2011) Calcium phosphate drug nanocarriers with ultrahigh and adjustable drug-loading capacity: one-step synthesis, in situ drug loading and prolonged drug release. Nanomed Nanotechnol Biol Med 7:428–434. https://doi.org/10.1016/j.nano.2010.12.005

    Article  CAS  Google Scholar 

  44. Tian B, Liu S, Wu S, Lu W, Wang D, Jin L, Hu B, Li K, Wang Z, Quan Z (2017) pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloid Surf B Biointerfaces 154:287–296. https://doi.org/10.1016/j.colsurfb.2017.03.024

    Article  CAS  Google Scholar 

  45. Wang M, Wang S, Li B, Tian Y, Zhang H, Bai L, Ba X (2020) Synthesis of linear polyglucoside and inhibition on the amyloid fibril formation of hen egg white lysozyme. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.10.234

    Article  Google Scholar 

  46. Rani RS, Saharay M (2019) Molecular dynamics simulation of protein-mediated biomineralization of amorphous calcium carbonate. RSC Adv 9:1653–1663. https://doi.org/10.1039/C8RA08459A

    Article  CAS  Google Scholar 

  47. Yu W, Sun T-W, Ding Z, Qi C, Zhao H, Chen F, Shi Z, Zhu Y-J, Chen D, He Y (2017) Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. J Mat Chem B 5:1039–1052. https://doi.org/10.1039/c6tb02747d

    Article  CAS  Google Scholar 

  48. Li T, Geng T, Md A, Banerjee P, Wang B (2019) Novel scheme for rapid synthesis of hollow mesoporous silica nanoparticles (HMSNs) and their application as an efficient delivery carrier for oral bioavailability improvement of poorly water-soluble BCS type II drugs. Colloid Surf B Biointerfaces 176:185–193. https://doi.org/10.1016/j.colsurfb.2019.01.004

    Article  CAS  Google Scholar 

  49. Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew Chem Int Edit 44:5083–5087. https://doi.org/10.1002/anie.200501500

    Article  CAS  Google Scholar 

  50. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378. https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  Google Scholar 

  51. Qi C, Zhu YJ, Chen F (2014) Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption. ACS Appl Mater Interfaces. https://doi.org/10.1021/am4060645

    Article  Google Scholar 

  52. Yu Y-D, Zhu Y-J, Qi C, Wu J (2017) Hydroxyapatite nanorod-assembled hierarchical microflowers: rapid synthesis via microwave hydrothermal transformation of CaHPO4 and their application in protein/drug delivery. Ceram Int 43:6511–6518. https://doi.org/10.1016/j.ceramint.2017.02.073

    Article  CAS  Google Scholar 

  53. Yu Y-D, Zhu Y-J, Qi C, Jiang Y-Y, Li H, Wu J (2017) Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J Colloid Interface Sci 496:416–424. https://doi.org/10.1016/j.jcis.2017.02.041

    Article  CAS  Google Scholar 

  54. Louka DA, Holwell N, Thomas BH, Chen F, Amsden BG (2018) Highly bioactive SDF-1α delivery from low-melting-point, biodegradable polymer microspheres. ACS Biomater Sci Eng 4:3747–3758. https://doi.org/10.1021/acsbiomaterials.7b00403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is financially supported by the foundation of National Key R & D Program of China [2017YFC1103800].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianying Cao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Wang, G., Yang, Y. et al. Biomolecules induce the synthesis of hollow hierarchical mesoporous structured hydroxyapatite microflowers: application in macromolecule drug delivery. J Mater Sci 56, 7034–7049 (2021). https://doi.org/10.1007/s10853-020-05688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05688-y

Navigation