Skip to main content
Log in

Facile synthesis, characterization, biocompatibility and protein loading/release property of zinc-doped hollow mesoporous bioactive glass nanospheres

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We synthetized hollow mesoporous bioactive glass nanospheres (HMBGS) and zinc-doped hollow mesoporous bioactive glass nanospheres (Zn-HMBGS) in which 5 mol% zinc was substituted for calcium using polyacrylic acid (PAA) as a template agent in sol-gel process. Then investigated the effect of zinc doping on morphology, size, structure, apatite-forming ability, biocompatibility and Bovine serum albumin (BSA) loading/release property of HMBGS. Results showed that Zn-HMBGS with an average particle size of 98.87 ± 7.08 nm were successfully fabricated and doping zinc did not significantly affect the spherical morphology, nano-scaled particle size and hollow mesoporous structure, but inhibited apatite-forming ability and improved biocompatibility of HMBGS. Additionally, the Zn-HMBGS possessed high specific surface area (120.014 m2g−1), large mesoporous size (5.26 ~ 6.68 nm) and hollow structure, exhibiting high loading capacity (202.17 ± 3.74 mg/g) and sustained release property for BSA. Due to their advantageous hollow mesoporous structure, good biocompatibility and efficient loading and stable release for BSA molecules, Zn-HMBGS show great potential as drug delivery systems for tissue regeneration.

Graphical Abstract

Highlights

  • Zinc-doped hollow mesoporous bioactive glass nanospheres (Zn-HMBGS) were prepared.

  • Zn-HMBGS exhibited high loading capacity and sustained release property for BSA.

  • Zn-HMBGS show great potential as drug delivery systems for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miguez PV, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15. https://doi.org/10.1016/j.actbio.2014.11.004

    Article  CAS  Google Scholar 

  3. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141. https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  4. Lossdörfer S, Schwartz Z, Lohmann C, Greenspan D, Ranly D, Boyan B (2004) Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 25:2547–2555. https://doi.org/10.1016/j.biomaterials.2003.09.094

    Article  CAS  PubMed  Google Scholar 

  5. Valerio P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948. https://doi.org/10.1016/j.biomaterials.2003.09.086

    Article  CAS  PubMed  Google Scholar 

  6. Li B, Luo WQ, Wang YY, Wu HY, Zhang CC (2016) Bioactive SiO2-CaO-P2O5 hollow nanospheres for drug delivery. J Non-Cryst Solids 447:98–103. https://doi.org/10.1016/j.jnoncrysol.2016.05.041

    Article  CAS  Google Scholar 

  7. Das MP, Pandey G, Neppolian B, Das J (2021) Design of poly-L-glutamic acid embedded mesoporous bioactive glass nanospheres for pH-stimulated chemotherapeutic drug delivery and antibacterial susceptibility. Colloid Surf B 202:111700. https://doi.org/10.1016/j.colsurfb.2021.111700

    Article  CAS  Google Scholar 

  8. Li X, Liang QM, Zhang W, Li YL, Ye JD, Zhao FJ, Chen XF, Wang SR (2017) Bio-inspired bioactive glasses for efficient microRNA and drug delivery. J Mater Chem B 5:6376–6384. https://doi.org/10.1039/C7TB01021D

    Article  CAS  PubMed  Google Scholar 

  9. Hu Q, Jiang WH, Li YL, Chen XF, Liu JM, Chen T, Miao GH (2018) The effects of morphology on physicochemical properties, bioactivity and biocompatibility of micro-/nano-bioactive glasses. Adv Powder Technol 28:1812–1819. https://doi.org/10.1016/j.apt.2018.04.017

    Article  CAS  Google Scholar 

  10. Firuzeh M, Labbaf S, Sabouri Z (2021) A facile synthesis of mono-dispersed, spherical and mesoporous bioactive glass nanoparticles for biomedical applications. J Non-Cryst Solids 554:120598. https://doi.org/10.1016/j.jnoncrysol.2020.120598

    Article  CAS  Google Scholar 

  11. Hu Q, Li YL, Miao GH, Zhao NR, Chen XF (2014) Size control and biological properties of monodispersed mesoporous bioactive glass sub-micron spheres. Rsc Adv 4:22678–22687. https://doi.org/10.1039/C4RA01276C

    Article  CAS  Google Scholar 

  12. Vichery C, Nedelec JM (2016) Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Materials 9:288. https://doi.org/10.3390/ma9040288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lei B, Chen XF, Han X, Zhou JA (2012) Versatile fabrication of nanoscale sol-gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem B 22:16906–16913. https://doi.org/10.1039/C2JM31384G

    Article  CAS  Google Scholar 

  14. Lin KP, Gan Y, Zhu PD, Li SS, Lin C, Yu SL, Zhao S, Shi JH, Li RM, Yuan JF (2021) Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. Nanotechnology 32:28560. https://doi.org/10.1088/1361-6528/abf4a9

    Article  CAS  Google Scholar 

  15. Zhao DC, Yang NL, Xu LK, Du J, Yang Y, Wang D (2022) Hollow structures as drug carriers: recognition, response, and release. Nano Res 15:739–757. https://doi.org/10.1007/s12274-021-3595-5

    Article  CAS  PubMed  Google Scholar 

  16. Bao Y, Shi CH, Wang T, Li XL, Ma JZ (2016) Recent progress in hollow silica: template synthesis, morphologies and applications. Micropor Mesopor Mat 227:121–136. https://doi.org/10.1016/j.micromeso.2016.02.040

    Article  CAS  Google Scholar 

  17. Zhao FJ, Lei B, Li X, Mo YF, Wang RX, Chen DF, Chen XF (2018) Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 178:36–47. https://doi.org/10.1016/j.biomaterials.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  18. Westhauser F, Decker S, Nawaz Q, Rehder F, Saur M, Wilesmann S, Moghaddam A, Kunisch E, Boccaccini AR (2021) Impact of Zinc- or Copper-Doped Mesoporous Bioactive Glass Nanoparticles on the Osteogenic Differentiation and Matrix Formation of Mesenchymal Stromal Cells. Materials 14:1457–1467. https://doi.org/10.3390/ma14081864

    Article  CAS  Google Scholar 

  19. Bahati D, Meriame B, Mabrouk KE (2023) Synthesis, characterization, and in vitro apatite formation of strontium-doped sol-gel-derived bioactive glass nanoparticles for bone regeneration applications. Ceram Int 49:23020–23034. https://doi.org/10.1016/j.ceramint.2023.04.128

    Article  CAS  Google Scholar 

  20. Wen SZ, Yu BR, Liu L, Zhu QX (2023) Thermophysical properties and flexural strength of strontium-fluorine Co-doped hydroxyapatite. J Ceram 44:305–311. https://doi.org/10.13957/j.cnki.tcxb.2023.02.011

    Article  Google Scholar 

  21. Wang SY, Li R, Xia DD, Zhao X, Zhu Y, Gu RL, Yoon JM, Liu YS (2021) The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review. Stem Cell Res Ther 12:123. https://doi.org/10.1186/s13287-021-02195-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naseri S, Lepry WC, Nazhat SN (2017) Bioactive glasses in wound healing: hope or hype? J Mater Chem B 5:6167–6174. https://doi.org/10.1039/C7TB01221G

    Article  CAS  PubMed  Google Scholar 

  23. Miao GH, Li ZM, Meng YC, Wu JW, Li YL, Hu Q, Chen XF, Yang XC, Chen XM (2019) Preparation, characterization, in vitro bioactivity and protein loading/release property of mesoporous bioactive glass microspheres with different compositions. Adv Powder Technol 30:1848–1857. https://doi.org/10.1016/j.apt.2019.06.002

    Article  CAS  Google Scholar 

  24. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  25. Coleman NJ, Hench LL (2000) A gel-derived mesoporous silica reference material for surface analysis by gas sorption2. Durability and stability. Ceram Int 26:179–186. https://doi.org/10.1016/S0272-8842(99)00045-0

    Article  CAS  Google Scholar 

  26. Taleb MFA, Alkahtani A, Mohamed SK (2015) Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 72:725–742. https://doi.org/10.1007/s00289-015-1301-z

    Article  CAS  Google Scholar 

  27. Anirudhan TS, Christa J (2018) Binusreejayan, pH and magnetic field sensitive folic acid conjugated protein-polyelectrolyte complex for the controlled and targeted delivery of 5-fluorouracil. J Ind Eng Chem 57:199–207. https://doi.org/10.1016/j.jiec.2017.08.024

    Article  CAS  Google Scholar 

  28. Zhang W, Zhao FJ, Huang DQ, Fu XL, Li X, Chen XF (2016) Strontium-Substituted Submicrometer Bioactive Glasses Modulate Macrophage Responses for Improved Bone Regeneration. ACS Appl Mater Interfaces 8:30747–30758. https://doi.org/10.1021/acsami.6b10378

    Article  CAS  PubMed  Google Scholar 

  29. Li ZM, Xie KK, Yang S, Yu T, Xiao Y, Zhou YH (2021) Multifunctional Ca-Zn-Si-based micro-nano spheres with anti-infective, anti-inflammatory, and dentin regenerative properties for pulp capping application. J Mater Chem B 9:8289–8299. https://doi.org/10.1039/D1TB01517F

    Article  CAS  PubMed  Google Scholar 

  30. Hu Q, Li YL, Zhao NR, Ning CY, Chen XF (2014) Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Mater Lett 134:130–133. https://doi.org/10.1016/j.matlet.2014.07.041

    Article  CAS  Google Scholar 

  31. Tsigkou O, Labbaf S, Steven MM, Porter AE, Jones JR (2014) Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater 3:115–125. https://doi.org/10.1002/adhm.201300126

    Article  CAS  PubMed  Google Scholar 

  32. Chasapis CT, Spiliopoulou CA, Loutsidou AC, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534. https://doi.org/10.1007/s00204-011-0775-1

    Article  CAS  PubMed  Google Scholar 

  33. Moghanian A, Firoozi S, Tahriri M (2017) Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass. Ceram Int 43:12835–12843. https://doi.org/10.1016/j.ceramint.2017.06.174

    Article  CAS  Google Scholar 

  34. Li YL, Liang QM, Lin C, Li X, Chen XF, Hu Q (2017) Facile synthesis and characterization of novel rapid-setting spherical sub-micron bioactive glasses cements and their biocompatibility in vitro. Mat Sci Eng C-Mater 75:646–652. https://doi.org/10.1016/j.msec.2017.02.095

    Article  CAS  Google Scholar 

  35. Nescakova Z, Zheng K, Liverani L, Nawaz Q, Galuskova D, Kankova H, Michalek M, Galusek D, Boccaccini AR (2019) Multifunctional zinc ion doped sol-gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioact Mater 4:312–321. https://doi.org/10.1016/j.bioactmat.2019.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kanzaki N, Onuma K, Treboux G, Tsutsumi S, Ito A (2000) Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J Phys Chem B 104:4189–4194. https://doi.org/10.1021/jp9939726

    Article  CAS  Google Scholar 

  37. Zheng K, Lu M, Rutkowski B, Dai XY, Yang YY, Taccardi N, Stachewicz U, Czyrska-Filemonowicz A, Hüser N, Boccaccini AR (2016) ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. J Mater Chem B 4:7936–7949. https://doi.org/10.1039/C6TB02053D

    Article  CAS  PubMed  Google Scholar 

  38. Du RL, Chang J, Ni SY, Zhai WY (2006) Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J Biomater Appl 20:341–360. https://doi.org/10.1177/0885328206054535

    Article  CAS  PubMed  Google Scholar 

  39. Boonsongrit Y, Abe H, Sato K, Naito M, Yoshimura M, Ichikawa H, Fukumori Y (2008) Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system. Mat Sci Eng B 148:162–165. https://doi.org/10.1016/j.mseb.2007.09.006

    Article  CAS  Google Scholar 

  40. El-Fiqi A (2022) Sol-gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell. Front Mater Sci 16:22060. https://doi.org/10.1007/s11706-022-0608-6

    Article  Google Scholar 

  41. Hu Q, Jiang WH, Chen XF, Li YY, Liang QM (2017) The effects of Sr concentration on physicochemical properties, bioactivity and biocompatibility of sub-micron bioactive glasses spheres. Adv Powder Technol 28:2713–2722. https://doi.org/10.1016/j.apt.2017.07.024

    Article  CAS  Google Scholar 

  42. Ding XB, Zheng J, Ju FY, Wang L, Kong JH, Feng JY, Liu T (2021) Facile fabrication of hollow mesoporous bioactive glass spheres: From structural behaviour to in vitro biology evaluation. Ceram Int 47:34836–34844. https://doi.org/10.1016/j.ceramint.2021.09.024

    Article  CAS  Google Scholar 

  43. Li CD, Wang C, Boccaccini AR, Zhen K (2023) Sol-gel processing and characterization of binary P2O5-CaO and ternary P2O5-CaO-Li2O mesoporous phosphate bioactive glasses. J Non-Cryst Solids 17:100159. https://doi.org/10.1016/j.nocx.2023.100159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52362038, 52362041, 52072162, 51962014), the key Project of Jiangxi Natural Science Foundation (2020ACBL214008), Jiangxi Provincial Natural Science Foundation (20224BAB204020, 20232BAB204012, 20224BAB214024), the Science Foundation of Jiangxi Provincial Department of Education (GJJ2201006), Jingdezhen science and technology project (20212GYZD009-07) and National College Student Innovation and Entrepreneurship Training Program Support Project (NO. 202310408027).

Author information

Authors and Affiliations

Authors

Contributions

Qing Hu: Project administration, Conceptualization, Writing-review, editing, Supervision. Huidong Tang, Hezhen Wu, Yanqiao Xu, Wentao Li and Xianjian Wang: Methodology, Formal analysis, Writing-original draft preparation. Guo Feng, Feng Jiang: Formal analysis, Writing-Review & Editing. Jian Liang, Jianmin Liu: Conceptualization, Technical supports.

Corresponding authors

Correspondence to Qing Hu or Yanqiao Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Tang, H., Wu, H. et al. Facile synthesis, characterization, biocompatibility and protein loading/release property of zinc-doped hollow mesoporous bioactive glass nanospheres. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06374-0

Keywords

Navigation