Skip to main content
Log in

Electric field control of magnetism at the γ-FeSi2/Si(001) interface

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

abstract

Interfaces often exhibit unique electronic and magnetic properties that are not present in their bulk constituents. Understanding the atomic-level structure and properties of the interface is crucial for their technological applications. In this article, we report a first-principles study of the γ-FeSi2/Si(001) interface to unravel the atomic-level structure property relationship. An external electric field is included in our model to tune the properties of the interface. Based on our calculations, we found a modest application of an electric field (> 0.15 eV/Å) could stabilize a sixfold and sevenfold coordinated, spin-active interface over a nonmagnetic (eightfold coordinated) interface-providing direct evidence of electric field control of magnetism at the interface. The sixfold as well as sevenfold coordinated structures are shown to favor antiferromagnetic spin ordering arising from the Fe(d)-Si(p)-Fe(d) super-exchange interaction. The distinct non-linear response of the interface structure to the applied electric field can be attributed to the different electronic and magnetic structures at the interface; the sixfold exhibits the highest polarizability over the other coordinated structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goldfarb I, Cesura F, Dascalu M (2018) Magnetic binary silicide nanostructures. Adv Mater 30:1800004–1800014

    Google Scholar 

  2. Wu H, Kratzer P, Scheffler M (2005) First-principles study of thin magnetic transition-metal silicide films on Si(001). Phys Rev B 72:144425–144436

    Google Scholar 

  3. Kratzer P, Hashemifar SJ, Wu H, Hortamani M, Scheffler M (2007) Transition-metal silicides as materials for magnet-semiconductor heterostructures. J Appl Phys 101:081725–081729

    Google Scholar 

  4. Kikitsu A (2009) Prospects for bit patterned media for high-density magnetic recording. J Magn Magn Mater 321:526–530

    CAS  Google Scholar 

  5. Hellman F, Hoffmann A, Tserkovnyak Y, Beach GSD, Fullerton EE, Leighton C, MacDonald AH, Ralph DC, Arena DA, Dürr HA, Fischer P, Grollier J, Heremans JP, Jungwirth T, Kimel AV, Koopmans B, Krivorotov IN, May SJ, Petford-Long AK, Rondinelli JM, Samarth N, Schuller IK, Slavin AN, Stiles MD, Tchernyshyov O, Thiaville A, Zink BL (2017) Interface-induced phenomena in magnetism. Rev Mod Phys 89:025006–025084

    Google Scholar 

  6. Volokh M, Mokari T (2020) Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Adv 2:930–961

    CAS  Google Scholar 

  7. Acosta M, Baiutti F, Tarancón A, MacManus-Driscoll JL (2019) Nanostructured materials and interfaces for advanced ionic electronic conducting oxides. Adv Mater Interfaces 6:1900462–1900476

    Google Scholar 

  8. Hansson J, Nilsson TMJ, Ye L, Liu J (2018) Novel nanostructured thermal interface materials: a review. Int Mater Rev 63:22–45

    CAS  Google Scholar 

  9. Kalia RK, Vashishta P, Mahanti SD (1982) Orientational order-disorder transition on a surface. Phys Rev Lett 49:676–680

    CAS  Google Scholar 

  10. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    CAS  Google Scholar 

  11. Tripathi JK, Markovich G, Goldfarb I (2013) Self-ordered magnetic α-FeSi2 nano-stripes on Si(111). Appl Phys Lett 102:251604–251608

    Google Scholar 

  12. Cao G, Singh DJ, Zhang XG, Samolyuk G, Qiao L, Parish C, Jin K, Zhang Y, Guo H, Tang S, Wang W, Yi J, Cantoni C, Siemons W, Payzant EA, Biegalski M, Ward TZ, Mandrus D, Stocks GM, Gai Z (2015) Ferromagnetism and nonmetallic transport of thin-film alpha-FeSi2: a stabilized metastable material. Phys Rev Lett 114:147202–147207

    Google Scholar 

  13. Zhandun VS, Zamkova NG, Ovchinnikov SG, Sandalov IS (2017) Self-consistent mapping: effect of local environment on formation of magnetic moment in alpha-FeSi2. Phys Rev B 95:054429–054442

    Google Scholar 

  14. Christensen NE (1990) Electronic structure of beta-FeSi2. Phys Rev B 42:7148–7153

    CAS  Google Scholar 

  15. Dascalu M, Diéguez O, Geng LD, Pati R, Jin YM, Goldfarb I (2019) Tomographic layer-by-layer analysis of epitaxial iron-silicide nanostructures by DFT-assisted STS. Appl Surf Sci 496:143583–143592

    CAS  Google Scholar 

  16. Chen YY, Lee PC, Tsai CB, Neeleshwar S, Wang CR, Ho JC, Hamdeh HH (2007) Chemical disorder-induced magnetism in FeSi2 nanoparticles. Appl Phys Lett 91:251907–251909

    Google Scholar 

  17. Hamdeh HH, Eltabey MM, Ho JC, Lee PC, Chen K, Chen YY (2010) Magnetism in nanoparticles of semiconducting FeSi2. J Magn Magn Mater 322:2227–2230

    CAS  Google Scholar 

  18. Goldfarb I, Camus Y, Dascalu M, Cesura F, Chalasani R, Kohn A (2017) Tuning magnetic response of epitaxial iron-silicide nanoislands by controlled self-assembled growth. Phys Rev B 96:045415–045425

    Google Scholar 

  19. Liang S, Islam R, Smith DJ, Bennett PA, O’Brien JR, Taylor B (2006) Magnetic iron silicide nanowires on Si(110). Appl Phys Lett 88:113111–113113

    Google Scholar 

  20. Gomoyunova MV, Malygin DE, Pronin II, Voronchikhin AS, Vyalikh DV, Molodtsov SL (2007) Initial stages of iron silicide formation on the Si(100) 2 × 1 surface. Surf Sci 601:5069–5076

    CAS  Google Scholar 

  21. Wallart X, Nys JP, Tételin C (1994) Growth of ultrathin iron silicide films: observation of the gamma-FeSi2 phase by electron spectroscopies. Phys Rev B 49:5714–5717

    CAS  Google Scholar 

  22. Onda N, Henz J, Müller E, Mäder KA, von Känel H (1992) Epitaxy of fluorite-structure silicides: metastable cubic FeSi2 on Si(111). Appl Surf Sci 56–58:421–426

    Google Scholar 

  23. Falke U, Bleloch A, Falke M, Teichert S (2004) atomic structure of a 2 × 1 reconstructed NiSi2/Si(001) interface. Phys Rev Lett 92:116103

    Google Scholar 

  24. Falke M, Falke U, Bleloch A, Teichert S, Beddies G, Hinneberg H-J (2005) Real structure of the CoSi2/Si(001) interface studied by dedicated aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 86:203103–203105

    Google Scholar 

  25. Falke M, Falke U, Bleloch A (2006) Misfit dislocations at the CoSi2/Si(001) interface studied by aberration-corrected high angle annular darkfield imaging. J Phys Conf Ser 26:21–24

    Google Scholar 

  26. Mi SB, Jia CL, Zhao QT, Mantl S, Urban K (2009) NiSi2/Si interface chemistry and epitaxial growth mode. Acta Mater 57:232–236

    CAS  Google Scholar 

  27. Loretto D, Gibson JM, Yalisove SM (1989) Evidence for a dimer reconstruction at a metal-silicon interface. Phys Rev Lett 63:298–301

    CAS  Google Scholar 

  28. Bulle-Lieuwma CWT, de Jong AF, Vandenhoudt DEW (1991) Investigation of the atomic interface structure of mesotaxial Si/CoSi2(100) layers formed by high-dose implantation. Philos Mag A 64:255–280

    Google Scholar 

  29. Catana A, Schmid PE, Lu P, Smith DJ (1992) atomic structures at cobalt silicide-silicon interfaces. Philos Mag A 66:933–956

    CAS  Google Scholar 

  30. Chen W-J, Chen F-R (1993) The atomic structure of Σ = 1 and Σ = 3 NiSi2/Si interfaces. Philos Mag A 68:605–630

    CAS  Google Scholar 

  31. Mäder KA, von Känel H, Baldereschi A (1993) Electronic structure and bonding in epitaxially stabilized cubic iron silicides. Phys Rev B 48:4364–4372

    Google Scholar 

  32. Werner P, Jäger W, Schüppen A (1993) Interface structure and Schottky barrier height of buried CoSi2/Si(001) layers. J Appl Phys 74:3846–3854

    CAS  Google Scholar 

  33. Chisholm MF, Browning ND, Pennycook SJ, Jebasinski R, Mantl S (1994) Z-contrast investigation of the ordered atomic interface of CoSi2/Si(001) layers. Appl Phys Lett 64:3608–3610

    CAS  Google Scholar 

  34. Buschmann V, Fedina L, Rodewald M, Van Tendeloo G (1998) a new model for the (2 × 1) reconstructed CoSi2-Si(100) interface. Philos Mag Lett 77:147–152

    CAS  Google Scholar 

  35. Zhao FF, Feng YP, Dong YF, Zheng JZ (2006) Interface reconstruction of MSi2/Si(001) (M=Co, Ni) from first principles. Phys Rev B 74:033301–033304

    Google Scholar 

  36. Ong BL, Ong W, Foo YL, Pan J, Tok ES (2012) Growth dynamics of low-dimensional CoSi2 nanostructures revisited: influence of interface structure and growth temperature. Surf Sci 606:1649–1669

    CAS  Google Scholar 

  37. Ong BL, Ong SW, Tok ES (2016) Endotaxial growth of CoSi2 nanowires on Si(001) surface: the influence of surface reconstruction. Surf Sci 647:84–89

    CAS  Google Scholar 

  38. Yu BD, Miyamoto Y, Sugino O, Sakai A, Sasaki T, Ohno T (2001) Structural and electronic properties of metal-silicide/silicon interfaces: a first-principles study. J Vac Sci Technol B 19:1180–1185

    CAS  Google Scholar 

  39. Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  40. Kresse G, Hafner J (1993) ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    CAS  Google Scholar 

  41. Kresse G, Furthmüller J (1996b) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    CAS  Google Scholar 

  42. Kresse G, Hafner J (1994) ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    CAS  Google Scholar 

  43. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  44. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396–1396

    CAS  Google Scholar 

  47. Neugebauer J, Scheffler M (1992) adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on al(111). Phys Rev B 46:16067–16080

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Ilan Goldfarb and Dr. Oswaldo Diéguez for their valuable comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei D. Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, L.D., Pati, R. & Jin, Y.M. Electric field control of magnetism at the γ-FeSi2/Si(001) interface. J Mater Sci 56, 3804–3813 (2021). https://doi.org/10.1007/s10853-020-05500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05500-x

Navigation