Skip to main content
Log in

A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetoelectric coupling phenomenon in multiferroics has attracted considerable research activities in the last decade due to its wide range of applications in spintronic, data storage and electrically tunable microwave devices. From the first realization of magnetoelectric coupling in Cr2O3, numerous single-phase and composite multiferroics have been explored for obtaining a stable room-temperature magnetoelectric coupling and many of them have been translated into device applications. Different magnetoelectric coupling effects are responsible for different device applications of multiferroic materials. Fundamental understanding of dynamics of these remarkable magnetoelectric coupling mechanisms in various multiferroic materials has been a prime aspect to develop new high-performance multiferroic devices. In this article, a comprehensive review on the mechanisms of breakthrough magnetoelectric coupling results in a variety of multiferroic materials has been presented with an intercomparison of their highest reported magnetoelectric coupling coefficients. A brief summary of some significant results on the room-temperature magnetoelectric coupling has been made that can be applied for practical magnetoelectric device fabrication.

Graphical abstract

Graphical abstract representing different magnetoelectric coupling mechanisms in single phase and composite multiferroic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Reproduced with permission from 10.1103/PhysRevB.77.174419.)

Figure 6
Figure 7

Reproduced with permission from 10.1021/nl901754t.)

Figure 8

Reproduced with permission from 10.1063/1.4958728)

Similar content being viewed by others

References

  1. Fiebig M, Lottermoser T, Meier D et al (2016) The evolution of multiferroics. Nat Rev Mater 1:16046. https://doi.org/10.1038/natrevmats.2016.46

    Article  CAS  Google Scholar 

  2. Spaldin NA, Ramesh R (2019) Advances in magnetoelectric multiferroics. Nature Mater 18:203–212. https://doi.org/10.1038/s41563-018-0275-2

    Article  CAS  Google Scholar 

  3. Wei Y, Gao C, Chen Z et al (2016) Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure. Sci Rep 61(6):1–8. https://doi.org/10.1038/srep30002

    Article  CAS  Google Scholar 

  4. Wu C, Liu Q, Wang Y et al (2019) Room-temperature nonvolatile four-state memory based on multiferroic Sr3Co2Fe21.6O37.4. J Alloys Compd 779:115–120. https://doi.org/10.1016/J.JALLCOM.2018.11.256

    Article  CAS  Google Scholar 

  5. Schmid H (1973) On a magnetoelectric classification of materials. Int J Magn 4:337–361

    CAS  Google Scholar 

  6. Ascher E, Rieder H, Schmid H, Stössel H (1966) Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J Appl Phys 37:1404–1405. https://doi.org/10.1063/1.1708493

    Article  CAS  Google Scholar 

  7. Folen VJ, Rado GT, Stalder EW (1961) Anisotropy of the magnetoelectric effect in Cr2O3. Phys Rev Lett 6:607. https://doi.org/10.1103/PhysRevLett.6:607

    Article  CAS  Google Scholar 

  8. Ma J, Hu J, Li Z, Nan CW (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087. https://doi.org/10.1002/ADMA.201003636

    Article  CAS  Google Scholar 

  9. Suchtelen J (2014) Product properties: a new application of composite materials

  10. Rivera JP (2011) On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161:165–180. https://doi.org/10.1080/00150199408213365

    Article  Google Scholar 

  11. Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321–448. https://doi.org/10.1080/00018730902920554

    Article  CAS  Google Scholar 

  12. Gareeva ZV, Zvezdin AK (2010) Pinning of magnetic domain walls in multiferroics. EPL Europhys Lett 91:47006. https://doi.org/10.1209/0295-5075/91/47006

    Article  CAS  Google Scholar 

  13. Giraldo M, Meier QN, Bortis A et al (2021) Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order. Nat Commun 12:3093. https://doi.org/10.1038/s41467-021-22587-1

    Article  CAS  Google Scholar 

  14. Xiao Z, Conte LR, Chen C et al (2018) Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion. Sci Rep 8:5207. https://doi.org/10.1038/s41598-018-23020-2

    Article  CAS  Google Scholar 

  15. Qin H, Dreyer R, Woltersdorf G, Taniyama T, Van S (2021) Electric-field control of propagating spin waves by ferroelectric domain-wall motion in a multiferroic heterostructure. Adv Mater 33:2100646. https://doi.org/10.1002/adma.202100646

    Article  CAS  Google Scholar 

  16. Shiratsuchi Y, Yoshida H, Kotani Y et al (2018) Antiferromagnetic domain wall creep driven by magnetoelectric effect. APL Mater 6:121104. https://doi.org/10.1063/1.5053928

    Article  CAS  Google Scholar 

  17. Baryakhtar VG, L’Vov VA, Yablonskii DA (1983) Inhomogeneous magnetoelectric effect. JETP Lett 37:673–675

    Google Scholar 

  18. Daraktchiev M, Catalan G, Scott JF (2010) Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375:122–131. https://doi.org/10.1080/00150190802437969

    Article  CAS  Google Scholar 

  19. Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205. https://doi.org/10.1103/PhysRevLett.95.057205

    Article  CAS  Google Scholar 

  20. Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys Rev B 73:094434. https://doi.org/10.1103/PhysRevB.73.094434

    Article  CAS  Google Scholar 

  21. Meier D, Maringer M, Lottermoser T et al (2009) Observation and coupling of domains in a spin-spiral multiferroic. Phys Rev Lett 102:107202. https://doi.org/10.1103/PhysRevLett.102.107202

    Article  CAS  Google Scholar 

  22. Fiebig M, Lottermoser T, Fröhlich D et al (2002) Observation of coupled magnetic and electric domains. Nature 419:818–820. https://doi.org/10.1038/nature01077

    Article  CAS  Google Scholar 

  23. Logginov AS, Meshkov GA, Nikolaev AV et al (2008) Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl Phys Lett 93:182510. https://doi.org/10.1063/1.3013569

    Article  CAS  Google Scholar 

  24. Khokhlov NE, Khramova AE, Nikolaeva EP et al (2017) Electric-field-driven magnetic domain wall as a microscale magneto-optical shutter. Sci Rep 717:1–7. https://doi.org/10.1038/s41598-017-00365-8

    Article  CAS  Google Scholar 

  25. Hämäläinen SJ, Brandl F, Franke KJA et al (2017) Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys Rev Appl 8:014020. https://doi.org/10.1103/PhysRevApplied.8.014020

    Article  Google Scholar 

  26. Shah J, Kotnala RK (2012) Room temperature magnetoelectric coupling enhancement in Mg-substituted polycrystalline GdFeO3. Scr Mater 4:316–319. https://doi.org/10.1016/J.SCRIPTAMAT.2012.05.003

    Article  Google Scholar 

  27. Jain Ruth DE, Rahman RAU, Dhamodaran M et al (2020) Room temperature magnetoelectric coupling in Fe-doped sodium bismuth titanate ceramics. J Alloys Compd 830:154679. https://doi.org/10.1016/J.JALLCOM.2020.154679

    Article  CAS  Google Scholar 

  28. Jain Ruth DE, Rahman RAU, Sundarakannan B, Ramaswamy M (2019) Room temperature multiferroicity and magnetoelectric coupling in Na-deficient sodium bismuth titanate. Appl Phys Lett. https://doi.org/10.1063/1.5078575

    Article  Google Scholar 

  29. Yahia G, Damay F, Chattopadhyay S et al (2017) Recognition of exchange striction as the origin of magnetoelectric coupling in multiferroics. Phys Rev B 95:184112. https://doi.org/10.1103/PhysRevB.95.184112

    Article  Google Scholar 

  30. Sergienko IA, Şen C, Dagotto E (2006) Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. Phys Rev Lett 97:227204. https://doi.org/10.1103/PhysRevLett.97.227204

    Article  CAS  Google Scholar 

  31. Ye M, Vanderbilt D (2015) Magnetic charges and magnetoelectricity in hexagonal rare-earth manganites and ferrites. Phys Rev B 92:035107. https://doi.org/10.1103/PhysRevB.92.035107

    Article  CAS  Google Scholar 

  32. Lee N, Choi YJ, Ramazanoglu M et al (2011) Mechanism of exchange striction of ferroelectricity in multiferroic orthorhombic HoMnO3 single crystals. Phys Rev B 84:020101. https://doi.org/10.1103/PhysRevB.84.020101

    Article  CAS  Google Scholar 

  33. Fisher ME, Selke W (1980) Infinitely many commensurate phases in a simple ising model. Phys Rev Lett 44:1502. https://doi.org/10.1103/PhysRevLett.44.1502

    Article  CAS  Google Scholar 

  34. Mochizuki M, Furukawa N, Nagaosa N (2010) Spin model of magnetostrictions in multiferroic Mn perovskites. Phys Rev Lett 105:037205. https://doi.org/10.1103/PhysRevLett.105.037205

    Article  CAS  Google Scholar 

  35. Muñoz A, Casáis MT, Alonso JA et al (2001) Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem 40:1020–1028. https://doi.org/10.1021/IC0011009

    Article  Google Scholar 

  36. Lorenz B, Wang YQ, Chu CW (2007) Ferroelectricity in perovskite HoMnO3 and TbMnO3. Phys Rev B 76:104405. https://doi.org/10.1103/PhysRevB76:104405

    Article  Google Scholar 

  37. Pomjakushin VY, Kenzelmann M, Dönni A et al (2009) Evidence for large electric polarization from collinear magnetism in TmMnO3. New J Phys 11:043019. https://doi.org/10.1088/1367-2630/11/4/043019

    Article  CAS  Google Scholar 

  38. Kagomiya I, Kohn K, Uchiyama T (2011) Structure and ferroelectricity of RMn2O5. Ferroelectrics 280:131–143. https://doi.org/10.1080/00150190214799

    Article  Google Scholar 

  39. Chattopadhyay S, Balédent V, Damay F et al (2016) Evidence of multiferroicity in NdMn2O5. Phys Rev B 93:104406. https://doi.org/10.1103/PhysRevB.93.104406

    Article  CAS  Google Scholar 

  40. Xin C, Song B, Sun Z et al (2020) Intrinsic role of ↑↑↓↓ type magnetic structure on magnetoelectric coupling in Y2NiMnO6. Appl Phys Lett 116:242901. https://doi.org/10.1063/5.0009568

    Article  CAS  Google Scholar 

  41. Noda Y, Kimura H, Fukunaga M et al (2008) Magnetic and ferroelectric properties of multiferroic RMn2O5. J Phys Condens Matter 20:434206. https://doi.org/10.1088/0953-8984/20/43/434206

    Article  CAS  Google Scholar 

  42. Lee N, Vecchini C, Choi YJ et al (2013) Giant tunability of ferroelectric polarization in GdMn2O5. Phys Rev Lett 110:137203. https://doi.org/10.1103/PhysRevLett110:137203

    Article  CAS  Google Scholar 

  43. Choi YJ, Yi HT, Lee S et al (2008) Ferroelectricity in an ising chain magnet. Phys Rev Lett 100:047601. https://doi.org/10.1103/PhysRevLett100:047601

    Article  CAS  Google Scholar 

  44. Nagano A, Naka M, Nasu J, Ishihara S (2007) Electric polarization, magnetoelectric effect, and orbital state of a layered iron oxide with frustrated geometry. Phys Rev Lett 99:217202. https://doi.org/10.1103/PhysRevLett.99.217202

    Article  CAS  Google Scholar 

  45. Fen JS, Xiang HJ (2016) Anisotropic symmetric exchange as a new mechanism for multiferroicity. Phys Rev B 93:174416. https://doi.org/10.1103/PhysRevB.93.174416

    Article  CAS  Google Scholar 

  46. Giovannetti G, Kumar S, Khomskii D et al (2009) Multiferroicity in rare-earth nickelates RNiO3. Phys Rev Lett 103:156401. https://doi.org/10.1103/PhysRevLett.103.156401

    Article  CAS  Google Scholar 

  47. Balédent V, Chattopadhyay S, Fertey P et al (2015) Evidence for room temperature electric polarization in RMn2O5 multiferroics. Phys Rev Lett 114:117601. https://doi.org/10.1103/PhysRevLett.114.117601

    Article  CAS  Google Scholar 

  48. Dey K, Indra A, Mukherjee S et al (2019) Natural ferroelectric order near ambient temperature in the orthoferrite HoFeO3. Phys Rev B 100:214432. https://doi.org/10.1103/PhysRevB.100.214432

    Article  CAS  Google Scholar 

  49. Juraschek DM, Fechner M, Balatsky AV, Spaldin NA (2017) Dynamical multiferroicity. Phys Rev Mater 1:014401. https://doi.org/10.1103/PhysRevMaterials.1.014401

    Article  Google Scholar 

  50. Sivarajah P, Steinbacher A, Dastrup B et al (2019) THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime. J Appl Phys 125:213103. https://doi.org/10.1063/1.5083849

    Article  CAS  Google Scholar 

  51. Tóth S, Wehinger B, Rolfs K et al (2016) Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2. Nat Commun 71(7):1–7. https://doi.org/10.1038/ncomms13547

    Article  CAS  Google Scholar 

  52. Rovillain P, Cazayous M, Gallais Y et al (2010) Magnetoelectric excitations in multiferroic TbMnO3 by Raman scattering. Phys Rev B 81:054428. https://doi.org/10.1103/PhysRevB.81.054428

    Article  CAS  Google Scholar 

  53. Senff D, Link P, Aliouane N et al (2008) Field dependence of magnetic correlations through the polarization flop transition in multiferroic TbMnO3: evidence for a magnetic memory effect. Phys Rev B 77:174419. https://doi.org/10.1103/PhysRevB.77.174419

    Article  CAS  Google Scholar 

  54. Pimenov A, Mukhin AA, Ivanov VY et al (2006) (2006) Possible evidence for electromagnons in multiferroic manganites. Nat Phys 22(2):97–100. https://doi.org/10.1038/nphys212

    Article  CAS  Google Scholar 

  55. Sushkov AB, Aguilar RV, Park S et al (2007) Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys Rev Lett 98:027202. https://doi.org/10.1103/PhysRevLett.98.027202

    Article  CAS  Google Scholar 

  56. Kida N, Ikebe Y, Takahashi Y et al (2008) Electrically driven spin excitation in the ferroelectric magnet DyMnO3. Phys Rev B 78:104414. https://doi.org/10.1103/PhysRevB.78.104414

    Article  CAS  Google Scholar 

  57. Aguilar RV, Mostovoy M, Sushkov AB et al (2009) Origin of electromagnon excitations in multiferroic RMnO3. Phys Rev Lett 102:047203. https://doi.org/10.1103/PhysRevLett.102.047203

    Article  CAS  Google Scholar 

  58. Damascelli A, van der Marel D, Grüninger M et al (1998) Direct two-magnon optical absorption in α-NaV2O5: charged magnons. Phys Rev Lett 81:918. https://doi.org/10.1103/PhysRevLett.81.918

    Article  CAS  Google Scholar 

  59. Senff D, Link P, Hradil K et al (2007) Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. Phys Rev Lett 98:137206. https://doi.org/10.1103/PhysRevLett.98.137206

    Article  CAS  Google Scholar 

  60. Ustinov AB, Drozdovskii AV, Nikitin AA et al (2019) (2019) Dynamic electromagnonic crystal based on artificial multiferroic heterostructure. Commun Phys 21(2):1–7. https://doi.org/10.1038/s42005-019-0240-7

    Article  CAS  Google Scholar 

  61. Khan P, Kanamaru M, Matsumoto K et al (2020) Ultrafast light-driven simultaneous excitation of coherent terahertz magnons and phonons in multiferroic BiFeO3. Phys Rev B 101:134413. https://doi.org/10.1103/PhysRevB.101.134413

    Article  CAS  Google Scholar 

  62. Bossini D, Konishi K, Toyoda S et al (2018) Femtosecond activation of magnetoelectricity. Nat Phys 144(14):370–374. https://doi.org/10.1038/s41567-017-0036-1

    Article  CAS  Google Scholar 

  63. Afanasiev D, Hortensius JR, Ivanov BA et al (2021) Ultrafast control of magnetic interactions via light-driven phonons. Nat Mater 205(20):607–611. https://doi.org/10.1038/s41563-021-00922-7

    Article  CAS  Google Scholar 

  64. Das BK, Ramachandran B, Dixit A et al (2020) Emergence of two-magnon modes below spin-reorientation transition and phonon-magnon coupling in bulk BiFeO3: an infrared spectroscopic study. J Alloys Compd 832:154754. https://doi.org/10.1016/J.JALLCOM.2020.154754

    Article  CAS  Google Scholar 

  65. Kamba S, Goian V, Skoromets V et al (2014) Strong spin-phonon coupling in infrared and Raman spectra of SrMnO3. Phys Rev B 89:064308. https://doi.org/10.1103/PhysRevB.89.064308

    Article  CAS  Google Scholar 

  66. Wang N, Luo X, Han L et al (2020) Structure, performance, and application of BiFeO3 nanomaterials. Nano Micro Lett 12:81. https://doi.org/10.1007/s40820-020-00420-6

    Article  CAS  Google Scholar 

  67. Bhoi K, Mohanty HS et al (2021) Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci Rep 111(11):1–17. https://doi.org/10.1038/s41598-021-82399-7

    Article  CAS  Google Scholar 

  68. Laguta V, Kempa M, Bovtun V et al (2020) Magnetoelectric coupling in multiferroic Z-type hexaferrite revealed by electric-field-modulated magnetic resonance studies. J Mater Sci 5518(55):7624–7633. https://doi.org/10.1007/S10853-020-04563-0

    Article  Google Scholar 

  69. Zhai K, Shang DS, Chai YS et al (2018) Room-temperature nonvolatile memory based on a single-phase multiferroic hexaferrite. Adv Funct Mater 28:1705771. https://doi.org/10.1002/ADFM.201705771

    Article  Google Scholar 

  70. Long J, Ivanov MS, Khomchenko VA et al (2020) Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium (III) complex. Science 367:671–676. https://doi.org/10.1126/SCIENCE.AAZ2795

    Article  CAS  Google Scholar 

  71. Algueró M, Cerdán PM, del Real RP et al (2020) Novel Aurivillius Bi4Ti3−2xNbxFexO12 phases with increasing magnetic-cation fraction until percolation: a novel approach for room temperature multiferroism. J Mater Chem C 8:12457–12469. https://doi.org/10.1039/D0TC03210G

    Article  Google Scholar 

  72. Borisov P, Hochstrat A, Chen X et al (2005) Magnetoelectric switching of exchange bias. Phys Rev Lett 94:117203. https://doi.org/10.1103/PhysRevLett.94.117203

    Article  CAS  Google Scholar 

  73. Ignatyeva DO, Kalish AN, Achanta VG, Song Y, Belotelov VI, Zvezdin AK (2018) Control of surface plasmon-polaritons in magnetoelectric heterostructures. J Light Technol 36:2660–2666. https://doi.org/10.1109/JLT.2018.2820805

    Article  CAS  Google Scholar 

  74. Dowben PA et al (2018) Towards a strong spin-orbit coupling magnetoelectric transistor. IEEE J Explor Solid State Comput Devices Circuits 4:1–9. https://doi.org/10.1109/JXCDC.2018.2809640

    Article  Google Scholar 

  75. Ji Y et al (2017) Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr2O3/heavy-metal W heterostructure. Appl Phys Lett 110:262401. https://doi.org/10.1063/1.4989680

    Article  CAS  Google Scholar 

  76. Ye S (2022) Magnetoelectric switching energy of antiferromagnetic Cr2O3 used for spintronic logic devices and memory. Phys Status Solidi RRL 16:2100396. https://doi.org/10.1002/pssr.202100396

    Article  CAS  Google Scholar 

  77. Zhao H, Kimura H, Cheng Z et al (2014) Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci Rep 41(4):1–8. https://doi.org/10.1038/srep05255

    Article  CAS  Google Scholar 

  78. Paul J, Bhardwaj S, Sharma KK et al (2015) Room temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction method. J Alloys Compd 634:58–64. https://doi.org/10.1016/J.JALLCOM.2015.01.259

    Article  CAS  Google Scholar 

  79. Mukherjee S, Roy A, Auluck S et al (2013) Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films. Phys Rev Lett 111:087601. https://doi.org/10.1103/PhysRevLett.111.087601

    Article  CAS  Google Scholar 

  80. Wang W, Zhao J, Wang W et al (2013) Room-temperature multiferroic hexagonal LuFeO3 films. Phys Rev Lett 110:237601. https://doi.org/10.1103/PhysRevLett.110.237601

    Article  CAS  Google Scholar 

  81. Zhang J, Xue W, Su T et al (2021) Nanoscale magnetization reversal by magnetoelectric coupling effect in Ga0.6Fe1.4O3 multiferroic thin films. ACS Appl Mater Interfaces 13:18194–18201. https://doi.org/10.1021/ACSAMI.0C21659

    Article  CAS  Google Scholar 

  82. Ebnabbasi K, Mohebbi M, Vittoria C (2013) Strong magnetoelectric coupling in hexaferrites at room temperature. J Appl Phys 113:17C707. https://doi.org/10.1063/1.4794745

    Article  CAS  Google Scholar 

  83. Wang L, Wang D, Cao Q et al (2012) Electric control of magnetism at room temperature. Sci Rep 21(2):1–5. https://doi.org/10.1038/srep00223

    Article  CAS  Google Scholar 

  84. Rahman RAU, Ruth DEJ, Chakravarty S et al (2019) Room temperature magnetoelectric coupling and relaxor-like multiferroic nature in a biphase of cubic pyrochlore and spinel. J Appl Phys 126:044103. https://doi.org/10.1063/1.5081895

    Article  CAS  Google Scholar 

  85. Wu J, Shi Z, Xu J et al (2012) Synthesis and room temperature four-state memory prototype of Sr3Co2Fe24O41 multiferroics. Appl Phys Lett 101:122903. https://doi.org/10.1063/1.4753973

    Article  CAS  Google Scholar 

  86. Livesey KL (2011) Strain-mediated magnetoelectric coupling in magnetostrictive/piezoelectric heterostructures and resulting high-frequency effects. Phys Rev B 83:224420. https://doi.org/10.1103/PhysRevB.83.224420

    Article  CAS  Google Scholar 

  87. Newacheck S et al (2022) On the magnetoelectric performance of multiferroic particulate composite materials. Smart Mater Struct 31:015022. https://doi.org/10.1088/1361-665X/ac383b

    Article  CAS  Google Scholar 

  88. Rafique M, Herklotz A, Dörr K, Manzoor S (2017) Giant room temperature magnetoelectric response in strain controlled nanocomposites. Appl Phys Lett 110:202902. https://doi.org/10.1063/1.4983357

    Article  CAS  Google Scholar 

  89. Park JH, Jang HM, Kim HS et al (2008) Strain-mediated magnetoelectric coupling in BaTiO3-Co nanocomposite thin films. Appl Phys Lett 92:062908. https://doi.org/10.1063/1.2842383

    Article  CAS  Google Scholar 

  90. Begué A, Ciria M (2021) Strain-mediated giant magnetoelectric coupling in a crystalline multiferroic heterostructure. ACS Appl Mater Interfaces 13:6778–6784. https://doi.org/10.1021/ACSAMI.0C18777

    Article  Google Scholar 

  91. Chaudhuri A, Mandal K (2015) Large magnetoelectric properties in CoFe2O4:BaTiO3 core–shell nanocomposites. J Magn Magn Mater 377:441–445. https://doi.org/10.1016/J.JMMM.2014.10.142

    Article  CAS  Google Scholar 

  92. Nayek C, Sahoo KK, Murugavel P (2013) Magnetoelectric effect in La0.7Sr0.3MnO3–BaTiO3 core–shell nanocomposite. Mater Res Bull 48:1308–1311. https://doi.org/10.1016/J.MATERRESBULL.2012.12.043

    Article  CAS  Google Scholar 

  93. Islam RA, Bedekar V, Poudyal N et al (2008) Magnetoelectric properties of core-shell particulate nanocomposites. J Appl Phys 104:104111. https://doi.org/10.1063/1.3013437

    Article  CAS  Google Scholar 

  94. Zheng Z, Zhou P, Liu Y et al (2020) Strain effect on magnetoelectric coupling of epitaxial NFO/PZT heterostructure. J Alloys Compd 818:152871. https://doi.org/10.1016/J.JALLCOM.2019.152871

    Article  CAS  Google Scholar 

  95. Bhoi K, Mohanty HS et al (2021) Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0.5Nb0.5O3)–(Co0.6Zn0.4Fe1.7Mn0.3O4) composites. Sci Rep 11:1–17. https://doi.org/10.1038/s41598-021-82399-7

    Article  CAS  Google Scholar 

  96. Ryu J, Priya S, Uchino K, Kim H-E (2002) Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram 82(8):107–119. https://doi.org/10.1023/A:1020599728432

    Article  Google Scholar 

  97. Fang Z, Lu SG, Li F et al (2009) Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect. Appl Phys Lett 95:112903. https://doi.org/10.1063/1.3231614

    Article  CAS  Google Scholar 

  98. Swain AB, Kumar SD, Subramanian V, Murugavel P (2020) Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications. Phys Rev Appl 13:024026. https://doi.org/10.1103/PhysRevApplied.13.024026

    Article  CAS  Google Scholar 

  99. Palneedi H, Annapureddy V, Lee HY et al (2018) Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals. J Asian Ceram Soc 5:36–41. https://doi.org/10.1016/J.JASCER.2016.12.005

    Article  Google Scholar 

  100. Zhai J, Dong S, Xing Z et al (2006) Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl Phys Lett 89:083507. https://doi.org/10.1063/1.2337996

    Article  CAS  Google Scholar 

  101. Dong S, Zhai J, Li J, Viehland D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl Phys Lett 89:252904. https://doi.org/10.1063/1.2420772

    Article  CAS  Google Scholar 

  102. Patil DR, Chai Y, Kambale RC et al (2013) Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl Phys Lett 102:062909. https://doi.org/10.1063/1.4792590

    Article  CAS  Google Scholar 

  103. Greve H, Woltermann E, Quenzer HJ et al (2010) Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl Phys Lett 96:182501. https://doi.org/10.1063/1.3377908

    Article  CAS  Google Scholar 

  104. Srinivasan G, Rasmussen ET, Gallegos J et al (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64:214408. https://doi.org/10.1103/PhysRevB.64.214408

    Article  CAS  Google Scholar 

  105. Palneedi H, Maurya D, Kim G-Y et al (2015) Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Appl Phys Lett 107:012904. https://doi.org/10.1063/1.4926568

    Article  CAS  Google Scholar 

  106. Jian L, Kumar AS, Lekha CSC et al (2019) Strong sub-resonance magnetoelectric coupling in PZT-NiFe2O4-PZT thin film composite. Nano-Struct Nano-Objects 18:100272. https://doi.org/10.1016/J.NANOSO.2019.100272

    Article  CAS  Google Scholar 

  107. Cherifi RO, Ivanovskaya V, Phillips LC et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 134(13):345–351. https://doi.org/10.1038/nmat3870

    Article  CAS  Google Scholar 

  108. Tian G, Zhang F, Yao J et al (2015) Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10:1025–1032. https://doi.org/10.1021/ACSNANO.5B06339

    Article  Google Scholar 

  109. Lorenz M, Lazenka V, Schwinkendorf P et al (2014) Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: strain engineering and magnetoelectric coupling. J Phys D Appl Phys 47:135303. https://doi.org/10.1088/0022-3727/47/13/135303

    Article  CAS  Google Scholar 

  110. Yarar E, Salzer S, Hrkac V et al (2016) Inverse bilayer magnetoelectric thin film sensor. Appl Phys Lett 109:022901. https://doi.org/10.1063/1.4958728

    Article  CAS  Google Scholar 

  111. Gupta R, Shah J, Chaudhary S et al (2013) Magnetoelectric coupling-induced anisotropy in multiferroic nanocomposite (1 - X) BiFeO3-X BaTiO3. J Nanoparticle Res 15:2004. https://doi.org/10.1007/s11051-013-2004-8

    Article  CAS  Google Scholar 

  112. Venkataiah G, Shirahata Y, Itoh M, Taniyama T (2011) Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field. Appl Phys Lett 99:102506. https://doi.org/10.1063/1.3628464

    Article  CAS  Google Scholar 

  113. Lahtinen THE, van Dijken S (2013) Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Appl Phys Lett 102:112406. https://doi.org/10.1063/1.4795529

    Article  CAS  Google Scholar 

  114. Geprägs S, Brandlmaier A, Opel M et al (2010) Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl Phys Lett 96:142509. https://doi.org/10.1063/1.3377923

    Article  CAS  Google Scholar 

  115. Liu M, Lou J, Li S, Sun NX (2011) E-field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv Funct Mater 21:2593–2598. https://doi.org/10.1002/ADFM.201002485

    Article  CAS  Google Scholar 

  116. Xu H, Feng M, Liu M et al (2018) Strain-mediated converse magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3–PbTiO3 multiferroic heterostructures. Cryst Growth Des 18:5934–5939. https://doi.org/10.1021/ACS.CGD.8B00702

    Article  CAS  Google Scholar 

  117. Gao Y, Hu JM, Wu L, Nan CW (2015) Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/27/50/504005

    Article  Google Scholar 

  118. Ghidini M, Dhesi SS, Mathur ND (2021) Nanoscale magnetoelectric effects revealed by imaging. J Magn Magn Mater 520:167016. https://doi.org/10.1016/J.JMMM.2020.167016

    Article  CAS  Google Scholar 

  119. Motti F, Vinai G, Bonanni V et al (2020) Interplay between morphology and magnetoelectric coupling in Fe/PMN-PT multiferroic heterostructures studied by microscopy techniques. Phys Rev Mater 4:114418. https://doi.org/10.1103/PhysRevMaterials.4.114418

    Article  CAS  Google Scholar 

  120. Ghidini M, Mansell R, Maccherozzi F et al (2019) Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat Mater 188(18):840–845. https://doi.org/10.1038/s41563-019-0374-8

    Article  CAS  Google Scholar 

  121. Weisheit M, Fähler S, Marty A et al (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351. https://doi.org/10.1126/SCIENCE.1136629

    Article  CAS  Google Scholar 

  122. Maruyama T, Shiota Y, Nozaki T et al (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotechnol 43(4):158–161. https://doi.org/10.1038/nnano.2008.406

    Article  CAS  Google Scholar 

  123. Duan C-G, Velev JP, Sabirianov RF et al (2008) Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett 101:137201. https://doi.org/10.1103/PhysRevLett.101.137201

    Article  CAS  Google Scholar 

  124. Zhang S (1999) Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys Rev Lett 83:640. https://doi.org/10.1103/PhysRevLett.83.640

    Article  CAS  Google Scholar 

  125. Vaz CAF, Hoffman J, Segal Y et al (2010) Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys Rev Lett 104:127202. https://doi.org/10.1103/PhysRevLett.104.127202

    Article  CAS  Google Scholar 

  126. Li W, Lee J, Demkov AA (2022) Extrinsic magnetoelectric effect at the BaTiO3/Ni interface. J Appl Phys 131:054101. https://doi.org/10.1063/5.0079880

    Article  CAS  Google Scholar 

  127. Niranjan MK, Burton JD, Velev JP et al (2009) Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: an ab initio study. Appl Phys Lett 95:052501. https://doi.org/10.1063/1.3193679

    Article  CAS  Google Scholar 

  128. Gupta R, Chaudhary S, Kotnala RK (2015) Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl Mater Interfaces 7:8472–8479. https://doi.org/10.1021/AM509055F

    Article  CAS  Google Scholar 

  129. Stolichnov I, Riester SWE, Trodahl HJ et al (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 76(7):464–467. https://doi.org/10.1038/nmat2185

    Article  CAS  Google Scholar 

  130. Cui B, Song C, Mao H et al (2015) Magnetoelectric coupling induced by interfacial orbital reconstruction. Adv Mater 27:6651–6656. https://doi.org/10.1002/ADMA.201503115

    Article  CAS  Google Scholar 

  131. Duan CG, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett 97:047201. https://doi.org/10.1103/PHYSREVLETT.97.047201

    Article  Google Scholar 

  132. Radaelli G, Petti D, Plekhanov E et al (2014) Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun 51(5):1–9. https://doi.org/10.1038/ncomms4404

    Article  CAS  Google Scholar 

  133. Ji H, Wang YG, Li Y (2017) Electric modulation of magnetization at the Fe3O4/BaTiO3 interface. J Magn Magn Mater 442:242–246. https://doi.org/10.1016/J.JMMM.2017.05.091

    Article  CAS  Google Scholar 

  134. Verissimo-Alves M, García-Fernández P, Bilc DI et al (2012) Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Phys Rev Lett 108:107003. https://doi.org/10.1103/PhysRevLett.108.107003

    Article  CAS  Google Scholar 

  135. Zhou Z, Howe BM, Liu M et al (2015) Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. Sci Rep 51(5):1–7. https://doi.org/10.1038/srep07740

    Article  CAS  Google Scholar 

  136. Kotnala RK, Gupta R, Chaudhary S (2015) Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl Phys Lett 107:082908. https://doi.org/10.1063/1.4929729

    Article  CAS  Google Scholar 

  137. Lorenz M, Lazenka V, Schwinkendorf P et al (2016) Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv Mater Interfaces 3:1500822. https://doi.org/10.1002/ADMI.201500822

    Article  Google Scholar 

  138. Lorenz M, Hirsch D, Patzig C et al (2017) Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl Mater Interfaces 9:18956–18965. https://doi.org/10.1021/ACSAMI.7B04084

    Article  CAS  Google Scholar 

  139. Ong LH, Chew KH (2013) Intermixing and magnetoelectric coupling in ferroelectric/multiferroic superlattices. Ferroelectrics 450:7–15. https://doi.org/10.1080/00150193.2013.838137

    Article  CAS  Google Scholar 

  140. Lee J, Sai N, Cai T et al (2010) Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B 81:144425. https://doi.org/10.1103/PhysRevB.81.144425

    Article  CAS  Google Scholar 

  141. Wang H, He L, Wu X (2012) Interface enhancement of spin-polar phonon coupling in perovskite multiferroic superlattices. Europhys Lett 100:17005. https://doi.org/10.1209/0295-5075/100/17005

    Article  CAS  Google Scholar 

  142. Martínez R, Kumar A, Palai R et al (2012) Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures. J Appl Phys 111:104104. https://doi.org/10.1063/1.4717727

    Article  CAS  Google Scholar 

  143. Pradhan DK, Kumari S, Vasudevan RK et al (2018) Exploring the magnetoelectric coupling at the composite interfaces of FE/FM/FE heterostructures. Sci Rep 8:17381. https://doi.org/10.1038/s41598-018-35648-1

    Article  CAS  Google Scholar 

  144. Quintana A, Zhang J, Isarain-Chávez E et al (2017) Voltage-induced coercivity reduction in nanoporous alloy films: a boost toward energy-efficient magnetic actuation. Adv Funct Mater 27:1701904. https://doi.org/10.1002/ADFM.201701904

    Article  Google Scholar 

  145. Mishra AK, Darbandi AJ, Leufke PM et al (2013) Room temperature reversible tuning of magnetism of electrolyte-gated La0.75Sr0.25MnO3 nanoparticles. J Appl Phys 113:033913. https://doi.org/10.1063/1.4778918

    Article  CAS  Google Scholar 

  146. Molinari A, Hahn H, Kruk R (2018) Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv Mater 30:1703908. https://doi.org/10.1002/ADMA.201703908

    Article  Google Scholar 

  147. Zhao S, Zhou Z, Peng B et al (2017) Quantitative determination on ionic-liquid-gating control of interfacial magnetism. Adv Mater 29:1606478. https://doi.org/10.1002/ADMA.201606478

    Article  Google Scholar 

  148. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232. https://doi.org/10.1016/S0304-8853(98)00266-2

    Article  Google Scholar 

  149. Wei L, Hu Z, Du G et al (2018) Full electric control of exchange bias at room temperature by resistive switching. Adv Mater 30:1801885. https://doi.org/10.1002/adma.201801885

    Article  CAS  Google Scholar 

  150. Wu SM, Cybart SA, Yu P et al (2010) Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater 99(9):756–761. https://doi.org/10.1038/nmat2803

    Article  CAS  Google Scholar 

  151. Laukhin V, Skumryev V, Martí X et al (2006) Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett 97:227201. https://doi.org/10.1103/PhysRevLett.97.227201

    Article  CAS  Google Scholar 

  152. Skumryev V, Laukhin V, Fina I et al (2011) Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys Rev Lett 106:057206. https://doi.org/10.1103/PhysRevLett.106.057206

    Article  CAS  Google Scholar 

  153. He X, Wang Y, Wu N et al (2010) Robust isothermal electric control of exchange bias at room temperature. Nat Mater 97(9):579–585. https://doi.org/10.1038/nmat2785

    Article  CAS  Google Scholar 

  154. Béa H, Bibes M, Ott F et al (2008) Mechanisms of exchange bias with multiferroic BiFeO3. Phys Rev Lett 100:017204. https://doi.org/10.1103/PhysRevLett.100.017204

    Article  CAS  Google Scholar 

  155. Prajapat CL, Bhatt H, Kumar Y et al (2020) Interface-induced magnetization and exchange bias in LSMO/BFO multiferroic heterostructures. ACS Appl Electron Mater 2:2629–2637. https://doi.org/10.1021/ACSAELM.0C00498

    Article  CAS  Google Scholar 

  156. Wu SM, Cybart SA, Yi D et al (2013) Full electric control of exchange bias. Phys Rev Lett 110:067202. https://doi.org/10.1103/PhysRevLett.110.067202

    Article  CAS  Google Scholar 

  157. Yi D, Yu P, Chen YC et al (2019) Tailoring magnetoelectric coupling in BiFeO3/La0.7Sr0.3MnO3 heterostructure through the interface engineering. Adv Mater 31:1806335. https://doi.org/10.1002/ADMA.201806335

    Article  Google Scholar 

  158. Gupta PK, Ghosh S, Kumar S et al (2019) Room temperature exchange bias in antiferromagnetic composite BiFeO3-TbMnO3. J Appl Phys 126:243903. https://doi.org/10.1063/1.5109713

    Article  CAS  Google Scholar 

  159. Gupta R, Shah J, Sharma C, Kotnala RK (2019) Interface assisted high magnetoresistance in BiFeO3/Fe97Si3 thin film at room temperature. J Alloys Compd 806:1377–1383. https://doi.org/10.1016/j.jallcom.2019.07.350

    Article  CAS  Google Scholar 

  160. Allibe J, Fusil S, Bouzehouane K et al (2012) Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141–1145. https://doi.org/10.1021/NL202537Y

    Article  CAS  Google Scholar 

  161. Martin LW, Chu Y-H, Zhan Q et al (2007) Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl Phys Lett 91:172513. https://doi.org/10.1063/1.2801695

    Article  CAS  Google Scholar 

  162. Heron JT, Trassin M, Ashraf K et al (2011) Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett 107:217202. https://doi.org/10.1103/PhysRevLett.107.217202

    Article  CAS  Google Scholar 

  163. Michel C, Moreau JM, Achenbach GD et al (1969) The atomic structure of BiFeO3. Solid State Commun 7:701–704. https://doi.org/10.1016/0038-1098(69)90597-3

    Article  CAS  Google Scholar 

  164. Chu Y-H, Martin LW, Holcomb MB et al (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 76(7):478–482. https://doi.org/10.1038/nmat2184

    Article  CAS  Google Scholar 

  165. Martin LW, Chu Y-H, Holcomb MB et al (2008) Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett 8:2050–2055. https://doi.org/10.1021/NL801391M

    Article  CAS  Google Scholar 

  166. Yu P, Lee JS, Okamoto S et al (2010) Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures. Phys Rev Lett 105:027201. https://doi.org/10.1103/PhysRevLett.105.027201

    Article  CAS  Google Scholar 

  167. Calderón MJ, Liang S, Yu R et al (2011) Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers. Phys Rev B 84:024422. https://doi.org/10.1103/PhysRevB.84.024422

    Article  CAS  Google Scholar 

  168. Xuan HC, Cao QQ, Zhang CL et al (2010) Large exchange bias field in the Ni–Mn–Sn Heusler alloys with high content of Mn. Appl Phys Lett 96:202502. https://doi.org/10.1063/1.3428782

    Article  CAS  Google Scholar 

  169. Yang YT, Gong YY, Ma SC et al (2015) Electric-field control of exchange bias field in a Mn50.1Ni39.3Sn10.6/piezoelectric laminate. J Alloys Compd 619:1–4. https://doi.org/10.1016/J.JALLCOM.2014.08.244

    Article  CAS  Google Scholar 

  170. Giang DTH, Duc NH, Agnus G et al (2013) Electric field-controlled magnetization in exchange biased IrMn/Co/PZT multilayers. Adv Nat Sci Nanosci Nanotechnol 4:025017. https://doi.org/10.1088/2043-6262/4/2/025017

    Article  CAS  Google Scholar 

  171. Lage E, Kirchhof C, Hrkac V et al (2012) Exchange biasing of magnetoelectric composites. Nat Mater 116(11):523–529. https://doi.org/10.1038/nmat3306

    Article  CAS  Google Scholar 

  172. Gajek M, Bibes M, Fusil S et al (2007) Tunnel junctions with multiferroic barriers. Nat Mater 64(6):296–302. https://doi.org/10.1038/nmat1860

    Article  CAS  Google Scholar 

  173. Lage E, Urs NO, Röbisch V et al (2014) Magnetic domain control and voltage response of exchange biased magnetoelectric composites. Appl Phys Lett 104:132405. https://doi.org/10.1063/1.4870511

    Article  CAS  Google Scholar 

  174. Tatarenko AS, Srinivasan G, Bichurin MI (2006) Magnetoelectric microwave phase shifter. Appl Phys Lett 88:183507. https://doi.org/10.1063/1.2198111

    Article  CAS  Google Scholar 

  175. Onate T-D, Wang Y, Long CJ, Takeuchi I (2011) Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl Phys Lett 99:203506. https://doi.org/10.1063/1.3662037

    Article  CAS  Google Scholar 

  176. Gruverman A, Wu D, Lu H et al (2009) Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett 9:3539–3543. https://doi.org/10.1021/NL901754T

    Article  CAS  Google Scholar 

  177. Manipatruni S, Nikonov DE, Lin C-C et al (2018) Scalable energy-efficient magnetoelectric spin–orbit logic. Nat 5657737(565):35–42. https://doi.org/10.1038/s41586-018-0770-2

    Article  CAS  Google Scholar 

  178. Prasad B, Huang YL, Chopdekar RV et al (2020) Ultralow voltage manipulation of ferromagnetism. Adv Mater 32:2001943. https://doi.org/10.1002/adma.202001943

    Article  CAS  Google Scholar 

  179. Salje EKH (2010) Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11:940–950. https://doi.org/10.1002/CPHC.200900943

    Article  CAS  Google Scholar 

  180. Sharma P, Zhang QI, Sando D et al (2017) Nonvolatile ferroelectric domain wall memory. Sci Adv 3:e170051. https://doi.org/10.1126/sciadv.1700512

    Article  CAS  Google Scholar 

  181. He Z, Angizi S, Fan D (2017) Current-induced dynamics of multiple Skyrmions with domain-wall pair and Skyrmion-based majority gate design. IEEE Magn Lett 8:1–5. https://doi.org/10.1109/LMAG.2017.2689721

    Article  Google Scholar 

  182. Lin H, Gao Y, Wang X et al (2016) Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans Magn. https://doi.org/10.1109/TMAG.2016.2514982

    Article  Google Scholar 

  183. Liu G, Cui X, Dong S (2010) A tunable ring-type magnetoelectric inductor. J Appl Phys 108:094106. https://doi.org/10.1063/1.3504218

    Article  CAS  Google Scholar 

  184. Schneider JD, Domann JP, Panduranga MK et al (2019) Experimental demonstration and operating principles of a multiferroic antenna. J Appl Phys 126:224104. https://doi.org/10.1063/1.5126047

    Article  CAS  Google Scholar 

  185. UstinovAB KBA, Srinivasan G (2014) Nonlinear multiferroic phase shifters for microwave frequencies. Appl Phys Lett 104:052911. https://doi.org/10.1063/1.4864315

    Article  CAS  Google Scholar 

  186. Zhao Y, Li Y, Zhu S et al (2021) Voltage tunable low damping YIG/PMN-PT multiferroic heterostructure for low-power RF/microwave devices. J Phys D Appl Phys 54:245002. https://doi.org/10.1088/1361-6463/ABCE7C

    Article  CAS  Google Scholar 

  187. Nikitin AO, Petrov RV, Khavanova MA, Tatarenko, Bichurin MI (2019) Modeling of magnetoelectric effect in multiferroic antenna. In: Photonics Electromagn Res Symp Spring (PIERS-Spring), pp 953–956. https://doi.org/10.1109/PIERSSpring46901.2019.9017230

  188. Dong G, Zhou Z, Xue X et al (2017) Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites. ACS Appl Mater Interfaces 9:30733–30740. https://doi.org/10.1021/ACSAMI.7B06876

    Article  CAS  Google Scholar 

  189. Wang L, Hu Z, Zhu Y et al (2020) Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range. ACS Appl Mater Interfaces 12:8855–8861. https://doi.org/10.1021/ACSAMI.9B20038

    Article  CAS  Google Scholar 

  190. Ludwig A, Quandt E (2002) Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing. IEEE Trans Magn 38:2829–2831. https://doi.org/10.1109/TMAG.2002.802467

    Article  CAS  Google Scholar 

  191. Song Y, Li Z, Sun Q et al (2012) Magnetic and electric property evolution of amorphous cobalt-rich alloys driven by field annealing. J Phys D Appl Phys 45:225001. https://doi.org/10.1088/0022-3727/45/22/225001

    Article  CAS  Google Scholar 

  192. Nath D, Mandal SK, Nath A (2019) Polymer based LaFeO3-Poly (vinylidene fluoride) hybrid nanocomposites: enhanced magneto-electric coupling, magnetoimpedance and dielectric response. J Alloys Compd 806:968–975. https://doi.org/10.1016/j.jallcom.2019.07.299

    Article  CAS  Google Scholar 

  193. Leung CM, Zhuang X, Xu J et al (2018) Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites. AIP Adv 8:055803. https://doi.org/10.1063/1.5006203

    Article  CAS  Google Scholar 

  194. Li P, Wen Y, Liu P, Li X, Jia C (2010) A magnetoelectric energy harvester and management circuit for wireless sensor network. Sens Actuator A Phys 157:100–106. https://doi.org/10.1016/j.sna.2009.11.007

    Article  CAS  Google Scholar 

  195. Dai X, Wen Y, Li P, Yang J, Zhang G (2009) Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite. Sens Actuator A Phys 156:350–358. https://doi.org/10.1016/j.sna.2009.10.002

    Article  CAS  Google Scholar 

  196. Yang J, Wen Y, Li P et al (2013) A two-dimensional broadband vibration energy harvester using magnetoelectric transducer. Appl Phys Lett 103:243903. https://doi.org/10.1063/1.4847755

    Article  CAS  Google Scholar 

  197. Lin Z, Chen J, Li X et al (2016) Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator. Appl Phys Lett 109:253903. https://doi.org/10.1063/1.4972188

    Article  CAS  Google Scholar 

  198. Zaeimbashi M, Nasrollahpour M, Khalifa A et al (2021) Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat Commun 12:3141. https://doi.org/10.1038/s41467-021-23256-z

    Article  CAS  Google Scholar 

  199. Zhang CL, Chen WQ (2010) A wideband magnetic energy harvester. Appl Phys Lett 96:123507. https://doi.org/10.1063/1.3360218

    Article  CAS  Google Scholar 

  200. Bai X, Wen Y, Li P, Yang J, Peng X, Yue X (2014) Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling. Sens Actuator A Phys 209:78–86. https://doi.org/10.1016/j.sna.2013.12.022

    Article  CAS  Google Scholar 

  201. Tan Z, Hong L, Fan Z et al (2019) Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect. NPG Asia Mater 11:20. https://doi.org/10.1038/s41427-019-0120-3

    Article  CAS  Google Scholar 

  202. Paillard C, Bai X, Infante IC et al (2016) Photovoltaics with ferroelectrics: current status and beyond. Adv Mater 28:5153–5168. https://doi.org/10.1002/adma.201505215

    Article  CAS  Google Scholar 

  203. Nechache R, Harnagea C, Li S et al (2015) Bandgap tuning of multiferroic oxide solar cells. Nature Photon 9:61–67. https://doi.org/10.1038/nphoton.2014.255

    Article  CAS  Google Scholar 

  204. Sun Y, Liu X, Zeng J et al (2015) Photovoltaic effects in polarized polycrystalline BiFeO3 films. J Electron Mater 44:4207–4212. https://doi.org/10.1007/s11664-015-3918-y

    Article  CAS  Google Scholar 

  205. Chakrabartty J, Nechache R, Harnagea C et al (2016) Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films. Nanotechnology 27:215402. https://doi.org/10.1088/0957-4484/27/21/215402

    Article  CAS  Google Scholar 

  206. Guo K, Wang X, Zhang R et al (2021) Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices. Light Sci Appl 10:201. https://doi.org/10.1038/s41377-021-00644-0

    Article  CAS  Google Scholar 

  207. Zhang G, Liu F, Gu T, Zhao Y, Li N, Yang W, Feng S (2017) Enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition. Adv Electron Mater 3:1600498. https://doi.org/10.1002/aelm.201600498

    Article  CAS  Google Scholar 

  208. Wu Z, Zhang Y, Ma K et al (2014) Strong visible-light photovoltaic effect in multiferroic Pb(Fe1/2V1/2)O3 bulk ceramics. Phys Status Solidi RRL 8:36–39. https://doi.org/10.1002/pssr.201308259

    Article  CAS  Google Scholar 

  209. Berenov A, Petrov P, Moffat B et al (2021) Pyroelectric and photovoltaic properties of Nb-doped PZT thin films. APL Mater 9:041108. https://doi.org/10.1063/5.0039593

    Article  CAS  Google Scholar 

  210. Young SM, Zheng F, Rappe AM (2013) Prediction of a linear spin bulk photovoltaic effect in antiferromagnets. Phys Rev Lett 110:057201. https://doi.org/10.1103/PhysRevLett.110.057201

    Article  CAS  Google Scholar 

  211. Wang J, Lu H, Pan X et al (2021) Spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral two-dimensional hybrid organic–inorganic perovskites. ACS Nano 15:588–595. https://doi.org/10.1021/acsnano.0c05980

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director NIET, Gr. Noida and Director National Physical Laboratory, New Delhi, for providing constant support and encouragement to carry forward this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Kotnala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Kotnala, R.K. A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J Mater Sci 57, 12710–12737 (2022). https://doi.org/10.1007/s10853-022-07377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07377-4

Navigation