Skip to main content

Advertisement

Log in

Fluorinated phenylpyridine iridium (III) complex based on metal–organic framework as highly efficient heterogeneous photocatalysts for cross-dehydrogenative coupling reactions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic reactions are promising strategies for converting solar energy into chemical energy. In this work, a MOF-based composite UiO-67-IrF with Ir complex and an electron-withdrawing group (trifluoromethyl group) is prepared and used as a photocatalyst for cross-dehydrogenation coupling reactions. For comparison, UiO-67-Ir without trifluoromethyl group and their pristine MOF UiO-67-bpy were also obtained. Both Ir-bearing composites (UiO-67-IrF and UiO-67-Ir) have crystalline and porous structure and high specific surface area (> 762 m2 g−1) and can effectively utilize visible light for cross-dehydrogenative coupling reactions. Notably, UiO-67-IrF with trifluoromethyl group has a lower specific surface area, but owns higher photocatalytic performance (yields about 82–89%) than its counterpart UiO-67-Ir, due to its better light absorption and charge separation under visible-light exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801. https://doi.org/10.1126/science.1137014

    Article  CAS  Google Scholar 

  2. Rukes B, Taud R (2004) Status and perspectives of fossil power generation. Energy 29(12):1853–1874. https://doi.org/10.1016/j.energy.2004.03.053

    Article  Google Scholar 

  3. Kim D, Sakimoto KK, Hong DC, Yang PD (2015) Artificial photosynthesis for sustainable fuel and chemical production. Angew Chem Int Ed 54(11):3259–3266. https://doi.org/10.1002/anie.201409116

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  5. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  Google Scholar 

  6. Chambers MB, Wang X, Elgrishi N, Hendon CH, Walsh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C (2015) Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. Chemsuschem 8(4):603–608. https://doi.org/10.1002/cssc.201403345

    Article  CAS  Google Scholar 

  7. Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang PD, Yaghi OM (2016) Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J Am Chem Soc 139(1):356–362. https://doi.org/10.1021/jacs.6b11027

    Article  CAS  Google Scholar 

  8. Zhao XX, Zhang SW, Yan JQ, Li LD, Wu GJ, Shi W, Yang GM, Guan NJ, Cheng P (2018) Polyoxometalate-based metal–organic frameworks as visible-light-induced photocatalysts. Inorg Chem 57(9):5030–5037. https://doi.org/10.1021/acs.inorgchem.8b00098

    Article  CAS  Google Scholar 

  9. Zhang RQ, Liu YY, Wang ZY, Wang P, Zheng ZK, Qin XY, Zhang XY, Dai Y, Whangbo MH, Huang BB (2019) Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal–organic frameworks under UV–vis light irradiation. Appl Catal B-Environ 254:463–470. https://doi.org/10.1016/j.apcatb.2019.05.024

    Article  CAS  Google Scholar 

  10. Marzo L, Pagire SK, Reiser O, König B (2018) Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed 57(32):10034–10072. https://doi.org/10.1002/anie.201709766

    Article  CAS  Google Scholar 

  11. Kampouri S, Stylianou KC (2019) Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal 9(5):4247–4270. https://doi.org/10.1021/acscatal.9b00332

    Article  CAS  Google Scholar 

  12. Zeng L, Guo XY, He C, Duan CY (2016) Metal–organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catal 6(11):7935–7947. https://doi.org/10.1021/acscatal.6b02228

    Article  CAS  Google Scholar 

  13. Zhi YF, Yao ZJ, Jiang WB, Xia H, Shi Z, Mu Y, Liu XM (2019) Conjugated microporous polymers as heterogeneous photocatalysts for efficient degradation of a mustard-gas simulant. ACS Appl Mater Interfaces 11(41):37578–37585. https://doi.org/10.1021/acsami.9b10958

    Article  CAS  Google Scholar 

  14. Amarajothi D, Abdullah MA, Hermenegildo G (2016) Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55(18):5414–5445. https://doi.org/10.1002/anie.201505581

    Article  CAS  Google Scholar 

  15. Gao C, Wang J, Xu HX, Xiong YJ (2017) Coordination chemistry in the design of heterogeneous photocatalysts. Chem Soc Rev 46(10):2799–2823. https://doi.org/10.1039/C6CS00727A

    Article  CAS  Google Scholar 

  16. Xiao JD, Jiang HL (2018) Metal–organic frameworks for photocatalysis and photothermal catalysis. Accs Chem Res 52(2):356–366. https://doi.org/10.1021/acs.accounts.8b00521

    Article  CAS  Google Scholar 

  17. Li R, Zhang W, Zhou K (2018) Metal–organic-framework-based catalysts for photoreduction of CO2. Adv Mater 30(35):1705512. https://doi.org/10.1002/adma.201705512

    Article  CAS  Google Scholar 

  18. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750. https://doi.org/10.1126/science.1200448

    Article  CAS  Google Scholar 

  19. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19(19):2889–2892. https://doi.org/10.1002/adma.200602377

    Article  CAS  Google Scholar 

  20. Zhang CQ, Ma YY, Li CY, Qin F, Hu CY, Hu QH, Duo SW (2019) Spatially confined growth of Bi2O4 into hierarchical TiO2 spheres for improved visible light photocatalytic activity. J Mater Sci. https://doi.org/10.1007/s10853-019-04143-x

    Article  Google Scholar 

  21. Satheesh R, Vignesh K, Suganthi A, Rajarajan M (2014) Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J Environ Chem Eng 2(4):1956–1968. https://doi.org/10.1016/j.jece.2014.08.016

    Article  CAS  Google Scholar 

  22. Chang MJ, Wang H, Li HL, Liu J, Du HL (2018) Facile preparation of novel Fe2O3/BiOI hybrid nanostructures for efficient visible light photocatalysis. J Mater Sci 53(5):3682–3691. https://doi.org/10.1007/s10853-017-1813-z

    Article  CAS  Google Scholar 

  23. Hou CC, Li TT, Cao S, Chen Y, Fu WF (2015) Incorporation of a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution. J Mater Chem A 3(19):10386–10394. https://doi.org/10.1039/C5TA01135C

    Article  CAS  Google Scholar 

  24. Zhang ZM, Zhang T, Wang C, Lin ZK, Long LS, Lin WB (2015) Photosensitizing metal–organic framework enabling visible-light-driven proton reduction by a Wells–Dawson-type polyoxometalate. J Am Chem Soc 137(9):3197–3200. https://doi.org/10.1021/jacs.5b00075

    Article  CAS  Google Scholar 

  25. Kataoka Y, Sato K, Miyazaki Y, Masuda K, Tanaka H, Naito S, Mori W (2009) Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n. Energ Environ Sci 2(4):397–400. https://doi.org/10.1039/B814539C

    Article  CAS  Google Scholar 

  26. Zhou TH, Du YH, Borgna A, Hong JD, Wang YB, Han JY, Wei Z, Rong X (2013) Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for hydrogen production. Energ Environ Sci 6(11):3229–3234. https://doi.org/10.1039/C3EE41548A

    Article  CAS  Google Scholar 

  27. Wang C, DeKrafft KE, Lin WB (2012) Pt nanoparticles@ photoactive metal–organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J Am Chem Soc 134(17):7211–7214. https://doi.org/10.1021/ja300539p

    Article  CAS  Google Scholar 

  28. Prier CK, Rankic DA, Macmillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113(7):5322–5363. https://doi.org/10.1021/cr300503r

    Article  CAS  Google Scholar 

  29. Ye Y, Sanford MS (2012) Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J Am Chem Soc 134(22):9034–9037. https://doi.org/10.1021/ja301553c

    Article  CAS  Google Scholar 

  30. Chen Q, Dong AW, Wang DX, Qiu L, Wang N (2019) Efficient and selective methane borylation through pore size tuning of hybrid porous organic-polymer-based iridium catalysts. Angew Chem Int Ed Engl 58(31):10671–10676. https://doi.org/10.1002/ange.201906350

    Article  CAS  Google Scholar 

  31. Liang HP, Chen Q, Han BH (2018) Cationic polycarbazole networks as visible-light heterogeneous photocatalysts for oxidative organic transformations. ACS Catal 8(6):5313–5322. https://doi.org/10.1021/acscatal.7b04494

    Article  CAS  Google Scholar 

  32. Pan L, Xu MY, Feng LJ, Chen Q, He YJ, Han BH (2016) Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(iii) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis. Polym Chem 7(12):2299–2307. https://doi.org/10.1039/C5PY01955A

    Article  CAS  Google Scholar 

  33. Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P (2018) Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 30(37):1704303. https://doi.org/10.1002/adma.201704303

    Article  CAS  Google Scholar 

  34. Feng L, Wang KY, Day GS, Zhou HC (2019) The chemistry of multi-component and hierarchical framework compounds. Chem Soc Rev 48(18):4823–4853. https://doi.org/10.1039/C9CS00250B

    Article  CAS  Google Scholar 

  35. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674. https://doi.org/10.1021/cr300014x

    Article  CAS  Google Scholar 

  36. Yang QH, Xu Q, Jiang HL (2017) Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46(15):4774–4808. https://doi.org/10.1039/C6CS00724D

    Article  CAS  Google Scholar 

  37. Cui WG, Hu TL, Bu XH (2019) Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv Mater. https://doi.org/10.1002/adma.201806445

    Article  Google Scholar 

  38. Wang H, Zhao S, Liu Y, Yao RX, Wang XQ, Cao YH, Ma D, Zou MC, Cao AY, Feng X, Wang B (2019) Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-12114-8

    Article  CAS  Google Scholar 

  39. Zheng BS, Yun RR, Bai JF, Lu ZY, Du LT, Li YZ (2013) Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption. Inorg Chem 52(6):2823–2829. https://doi.org/10.1021/ic301598n

    Article  CAS  Google Scholar 

  40. Molefe LY, Musyoka NM, Ren JW, Langmi HW, Ndungu PG, Dawson R, Mathe M (2019) Synthesis of porous polymer-based metal–organic frameworks monolithic hybrid composite for hydrogen storage application. J Mater Sci 54(9):7078–7086. https://doi.org/10.1007/s10853-019-03367-1

    Article  CAS  Google Scholar 

  41. Zhao WS, Li GD, Tang ZY (2019) Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today 27:178–197. https://doi.org/10.1016/j.nantod.2019.05.007

    Article  CAS  Google Scholar 

  42. Manna K, Zhang T, Greene FX, Lin WB (2015) Bipyridine-and phenanthroline-based metal–organic frameworks for highly efficient and tandem catalytic organic transformations via directed C–H activation. J Am Chem Soc 137(7):2665–2673. https://doi.org/10.1021/ja512478y

    Article  CAS  Google Scholar 

  43. Chen L, Ding X, Huo J, Hankari SE, Bradshaw D (2019) Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts. J Mater Sci 54(1):370–382. https://doi.org/10.1007/s10853-018-2835-x

    Article  CAS  Google Scholar 

  44. Wang S, Wang QY, Feng X, Wang B, Yang L (2017) Explosives in the cage: metal–organic frameworks for high-energy materials sensing and desensitization. Adv Mater 29(36):1701898. https://doi.org/10.1002/adma.201701898

    Article  CAS  Google Scholar 

  45. Gao T, Dong BX, Sun Y, Liu WL, Teng YL (2019) Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. J Mater Sci 54(15):10644–10655. https://doi.org/10.1007/s10853-019-03638-x

    Article  CAS  Google Scholar 

  46. Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC (2019) Metal–organic frameworks for food safety. Chem Rev 119(18):10638–10690. https://doi.org/10.1021/acs.chemrev.9b00257

    Article  CAS  Google Scholar 

  47. Ma XJ, Chai YT, Li P, Wang B (2019) Metal–organic framework films and their potential applications in environmental pollution control. Accounts Chem Res 52:1461–1470. https://doi.org/10.1021/acs.accounts.9b00113

    Article  CAS  Google Scholar 

  48. Zhang YY, Yuan S, Feng X, Li HW, Zhou JW, Wang B (2016) Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc 138(18):5785–5788. https://doi.org/10.1021/jacs.6b02553

    Article  CAS  Google Scholar 

  49. Li P, Li JZ, Feng X, Li J, Hao YC, Zhang JW, Wang H, Yin AX, Zhou JW, Ma XJ, Wang B (2019) Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat Commun 10(1):2177. https://doi.org/10.1038/s41467-019-10218-9

    Article  CAS  Google Scholar 

  50. Wang H, Rassu P, Wang X, Li HW, Wang X, Wang XQ, Feng X, Yin AX, Li PF, Jin X, Chen SL, Ma XJ, Wang B (2018) An iron-containing metal–organic framework as a highly efficient catalyst for ozone decomposition. Angew Chem Int Ed 130(50):16654–16658. https://doi.org/10.1002/anie.201810268

    Article  CAS  Google Scholar 

  51. Yun RR, Cui RR, Qian FJ, Cao XY, Luo SZ, Zheng BS (2015) Formation of a metal–organic framework with high gas uptakes based upon amino-decorated polyhedral cages. RSC Adv 5(4):2374–2377. https://doi.org/10.1039/C4RA14607G

    Article  CAS  Google Scholar 

  52. Li G, Liu QQ, Xia BJ, Huang J, Li SZ, Guan YZ, Zhou H, Liao B, Zhou Z, Liu B (2017) Synthesis of stable metal-containing porous organic polymers for gas storage. Eur Polym J 91:242–247. https://doi.org/10.1016/j.eurpolymj.2017.03.014

    Article  CAS  Google Scholar 

  53. Zou JY, Li L, You SY, Cui HM, Liu YW, Chen KH, Chen YH, Cui JZ, Zhang SW (2018) Sensitive luminescent probes of aniline, benzaldehyde and Cr (VI) based on a zinc (II) metal-organic framework and its lanthanide (III) post-functionalizations. Dyes Pigments 159:429–438. https://doi.org/10.1016/j.dyepig.2018.07.005

    Article  CAS  Google Scholar 

  54. Zuo Q, Liu TT, Chen CS, Ji Y, Gong XQ, Mai YY, Zhou YF (2019) Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem Int Ed 58:10198–10203. https://doi.org/10.1002/ange.201904058

    Article  CAS  Google Scholar 

  55. Fu YH, Sun DR, Chen YJ, Huang RK, Ding ZX, Fu XZ, Li ZH (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Edit 51(14):3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  56. Johnson J, Luo J, Zhang X, Chen Y, Morton M, Echeverría E, Torres F, Zhang J (2015) Porphyrin-metalation-mediated tuning of photoredox catalytic properties in metal–organic frameworks. ACS Catal 5(9):5283–5291. https://doi.org/10.1021/acscatal.5b00941

    Article  CAS  Google Scholar 

  57. Dhakshinamoorthy A, Li ZH, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47(22):8134–8172. https://doi.org/10.1039/C8CS00256H

    Article  CAS  Google Scholar 

  58. Øien S, Agostini G, Svelle S, Borfecchia E, Lomachenko KA, Mino L, Gallo E, Bordiga S, Olsbye U, Lillerud KP (2015) Probing reactive platinum sites in UiO-67 zirconium metal–organic frameworks. Chem Mater 27(3):1042–1056. https://doi.org/10.1021/cm504362j

    Article  CAS  Google Scholar 

  59. Pierre Q, Inna P, Eli ZC, Li CJ (2016) Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst. Beilstein J Org Chem 12(1):2636–2643. https://doi.org/10.3762/bjoc.12.260

    Article  CAS  Google Scholar 

  60. Yoo WJ, Kobayashi S (2014) Efficient visible light-mediated cross-dehydrogenative coupling reactions of tertiary amines catalyzed by a polymer-immobilized iridium-based photocatalyst. Green Chem 16(5):2438. https://doi.org/10.1039/C4GC00058G

    Article  CAS  Google Scholar 

  61. Wang C, Xie Z, Dekrafft KE, Lin WB (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133(34):13445–13454. https://doi.org/10.1021/ja203564w

    Article  CAS  Google Scholar 

  62. Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan CG, Han BH (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134(14):6084–6087. https://doi.org/10.1021/ja300438w

    Article  CAS  Google Scholar 

  63. Dong A, Zhu Y, Ren M, Sun X, Murugadoss V, Yuan Y, Wen J, Wang X, Chen Q, Guo Z, Wang N (2019) Remarkably enhanced CO2 uptake and uranium extraction by functionalization of cyano-bearing conjugated porous polycarbazoles. Eng Sci 6:44–52. https://doi.org/10.30919/es8d688

    Article  Google Scholar 

  64. Dong A, Dai T, Ren M, Zhao X, Zhao S, Yuan Y, Chen Q, Wang N (2019) Functionalization and fabrication of soluble polymers of intrinsic microporosity for CO2 transformation and uranium extraction. Eng Sci 5:56–65. https://doi.org/10.30919/es8d613

    Article  Google Scholar 

  65. Dong AW, Wang DX, Dai TT, Chen Q, Feng LJ, Wang N (2018) Micro/mesoporous conjugated fluorinated iron-porphyrin polymer: porosity and heterogeneous catalyst for oxidation. Adv Compos Hybrid Mater 1(2):696–704. https://doi.org/10.1007/s42114-018-0063-0

    Article  CAS  Google Scholar 

  66. Feng LJ, Zhang SZ, Sun XY, Dong AW, Chen Q (2018) Boronic acid-functionalized porous polycarbazoles: preparation, adsorption performance, and heterogeneous catalysts for selective oxidation. J Mater Sci 53(21):15025–15033. https://doi.org/10.1007/s10853-018-2682-9

    Article  CAS  Google Scholar 

  67. Lv XL, Yuan S, Xie LH, Darke HF, Chen Y, He T, Dong C, Wang B, Zhang YZ, Li JR (2019) Ligand-rigidification for enhancing the stability of metal–organic frameworks. J Am Chem Soc 141(26):10283–10293. https://doi.org/10.1021/jacs.9b02947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Key Research and Development Program of Hainan Province (ZDYF2019016), the National Natural Science Foundation of China (51873053 and 21975058), and the Start-up Scientific Research Foundation of Hainan University (Grant KYQD(ZR)1812) is acknowledged. Zhuyin Sui also acknowledges the Taishan Scholars Program (Grant No. tsqn201909087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuyin Sui, Lijuan Feng or Qi Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Dong, A., Zhang, S. et al. Fluorinated phenylpyridine iridium (III) complex based on metal–organic framework as highly efficient heterogeneous photocatalysts for cross-dehydrogenative coupling reactions. J Mater Sci 55, 9364–9373 (2020). https://doi.org/10.1007/s10853-020-04674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04674-8

Navigation