Skip to main content
Log in

Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Design and synthesis of magnetic macroporous metal–organic frameworks (MOFs) have been of significant interest, in order to improve the catalytic efficiency and reusability. In this work, we prepared magnetic macroporous MOF composites based on as-prepared magnetic macroporous polyacrylamides (MMPam). Different MOFs with or without unsaturated coordinative metal sites, including HKUST-1, MOF-2, UiO-66, and Fe-MIL-101(-NH2) were grown on and within the MMPam matrices. The composites showed hierarchical porosity with both micro- and macropores, which facilitated substrate diffusion to increase the conversion for isomerization of α-pinene oxide from 62% in the case of pure HKUST-1 microparticles to 90% in the case of HKUST-1@MMPam. The magnetic property also endowed the composites with easy recovery and reasonable reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341:974

    Article  CAS  Google Scholar 

  2. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal–organic frameworks. Science 327:846–850

    Article  CAS  Google Scholar 

  3. Zhan TR, Lu SS, Rong HQ, Hou WG, Teng HN, Wen YH (2018) Metal–organic-framework-derived Co/nitrogen-doped porous carbon composite as an effective oxygen reduction electrocatalyst. J Mater Sci 53:6774–6784. https://doi.org/10.1007/s10853-018-1989-x

    Article  CAS  Google Scholar 

  4. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2011) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  Google Scholar 

  5. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Metal–organic frameworks in biomedicine. Chem Rev 112:1232–1268

    Article  CAS  Google Scholar 

  6. Tella AC, Owalude SO (2014) A green route approach to the synthesis of Ni(II) and Zn(II) templated metal–organic frameworks. J Mater Sci 49:5635–5639. https://doi.org/10.1007/s10853-014-8277-1

    Article  CAS  Google Scholar 

  7. de Decker J, de Clercq J, Vermeir P, van der Voort P (2016) Functionalized metal–organic-framework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent. J Mater Sci 51:5019–5026. https://doi.org/10.1007/s10853-016-9807-9

    Article  CAS  Google Scholar 

  8. Liu H, Xu C, Li D, Jiang HL (2018) Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew Chem 57:5379–5383

    Article  CAS  Google Scholar 

  9. Li R, Wu S, Wan X, Xu H, Xiong Y (2016) Cu/TiO2 octahedral-shell photocatalysts derived from metal–organic framework@semiconductor hybrid structures. Inorg Chem Front 3:104–110

    Article  CAS  Google Scholar 

  10. Long R, Li Y, Liu Y, Chen S, Zheng X, Gao C, He C, Chen N, Qi Z, Song L, Jiang J, Zhu J, Xiong Y (2017) Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J Am Chem Soc 139:4486–4492

    Article  CAS  Google Scholar 

  11. Zhong DC, Wen YQ, Deng JH, Luo XZ, Gong YN, Lu TB (2015) Uncovering the role of metal catalysis in tetrazole formation by an in situ cycloaddition reaction: an experimental approach. Angew Chem 54:11795–11799

    Article  CAS  Google Scholar 

  12. Cao LM, Wang JW, Zhong DC, Lu TB (2018) Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. J Mater Chem A 2018(6):3224–3230

    Article  Google Scholar 

  13. Bradshaw D, El-Hankari S, Lupica-Spagnolo L (2014) Supramolecular templating of hierarchically porous metal–organic frameworks. Chem Soc Rev 43:5431–5443

    Article  CAS  Google Scholar 

  14. Kurmoo M (2009) Magnetic metal–organic frameworks. Chem Soc Rev 38:1353–1379

    Article  CAS  Google Scholar 

  15. Koh K, Wong-Foy AG, Matzger AJ (2008) A crystalline mesoporous coordination copolymer with high microporosity. Angew Chem Int Ed 47:677–680

    Article  CAS  Google Scholar 

  16. Coronado E, Giménez-Marqués M, Espallargas GM, Brammer L (2012) Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nat Commun 3:828

    Article  Google Scholar 

  17. Ricco R, Malfatti L, Takahashi M, Hill AJ, Falcaro P (2013) Applications of magnetic metal–organic framework composites. J Mater Chem A 1:13033–13045

    Article  CAS  Google Scholar 

  18. Imaz I, Hernando J, Ruiz-Molina D, Maspoch D (2009) Metal–organic spheres as functional systems for guest encapsulation. Angew Chem Int Ed 48:2325–2329

    Article  CAS  Google Scholar 

  19. Falcaro P, Normandin F, Takahashi M, Scopece P, Amenitsch H, Costacurta S, Doherty CM, Laird JS, Lay MDH, Lisi F, Hill AJ, Buso D (2011) Dynamic control of MOF-5 crystal positioning using a magnetic field. Adv Mater 23:3901–3906

    Article  CAS  Google Scholar 

  20. Hu Y, Huang Z, Liao J, Li G (2013) Chemical bonding approach for fabrication of hybrid magnetic metal–organic framework-5: high efficient adsorbents for magnetic enrichment of trace analytes. Anal Chem 85:6885–6893

    Article  CAS  Google Scholar 

  21. Silvestre ME, Franzreb M, Weidler PG, Shekhah O, Wöll C (2013) Magnetic cores with porous coatings: growth of metal–organic frameworks on particles using liquid phase epitaxy. Adv Funct Mater 23:1210–1213

    Article  CAS  Google Scholar 

  22. Schwab MG, Senkovska I, Rose M, Koch M, Pahnke J, Jonschker G, Kaskel S (2008) MOF@PolyHIPEs. Adv Eng Mater 10:1151–1155

    Article  CAS  Google Scholar 

  23. O’Neill LD, Zhang H, Bradshaw D (2010) Macro-/microporous MOF composite beads. J Mater Chem 20:5720–5726

    Article  Google Scholar 

  24. Li G, Liu Q, Xia B, Huang J, Li S, Guan Y, Zhou H, Liao B, Zhou Z, Liu B (2017) Synthesis of stable metal-containing porous organic polymers for gas storage. Eur Polym J 91:242–247

    Article  CAS  Google Scholar 

  25. Qian L, Ahmed A, Zhang H (2011) Formation of organic nanoparticles by solvent evaporation within porous polymeric materials. Chem Commmun 47:10001–10003

    Article  CAS  Google Scholar 

  26. Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19:1529–1533

    Article  CAS  Google Scholar 

  27. Zeng Y, Hao R, Xing B, Hou Y, Xu Z (2010) One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chem Commun 46:3920–3922

    Article  CAS  Google Scholar 

  28. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    Article  CAS  Google Scholar 

  29. Pérez-Mayoral E, Čejka J (2011) [Cu3(BTC)2]: a metal–organic framework catalyst for the Friedländer reaction. Chemcatchem 3:157–159

    Article  Google Scholar 

  30. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88

    Article  CAS  Google Scholar 

  31. Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos DE (2006) Probing the Lewis acidity and catalytic activity of the metal–organic framework Cu3(btc)2 (BTC=benzene-1,3,5-tricarboxylate). Chem Eur J 12:7353–7363

    Article  CAS  Google Scholar 

  32. Arslan HK, Shekhah O, Wieland DCF, Paulus M, Sternemann C, Schroer MA, Tiemeyer S, Tolan M, Fischer RA, Wöll C (2011) Intercalation in layered metal–organic frameworks: reversible inclusion of an extended π-system. J Am Chem Soc 133:8158–8161

    Article  CAS  Google Scholar 

  33. Sun Y, Wang L, Yu X, Chen K (2012) Facile synthesis of flower-like 3D ZnO superstructures via solution route. CrystEngComm 14:3199–3204

    Article  CAS  Google Scholar 

  34. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  35. Maksimchuk NV, Kovalenko KA, Fedin VP, Kholdeeva OA (2012) Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chem Commun 48:6812–6814

    Article  CAS  Google Scholar 

  36. Savonnet M, Kockrick E, Camarata A, Bazer-Bachi D, Bats N, Lecocq V, Pinel C, Farrusseng D (2011) Combinatorial synthesis of metal–organic frameworks libraries by click-chemistry. New J Chem 35:1892–1897

    Article  CAS  Google Scholar 

  37. Serra-Crespo P, Ramos-Fernandez EV, Gascon J, Kapteijn F (2011) Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties. Chem Mater 23:2565–2572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (Grant Nos. 51503062 and 21573063), the European Research Council (ERC-StG-2010-258613-BIOMOF), the Provincial Natural Science Foundation of Hunan (Grant No. 2017JJ3025), Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20170306141630229), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Huo or Darren Bradshaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ding, X., Huo, J. et al. Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts. J Mater Sci 54, 370–382 (2019). https://doi.org/10.1007/s10853-018-2835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2835-x

Keywords

Navigation