Skip to main content
Log in

Enhanced removal of pollutant in a BiPO4–SiO2 hybrid hydrogel via an adsorption–enrichment and in situ photocatalysis synergy

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing a material with the advantage of adsorption–enrichment and photocatalysis degradation has great practical significance in water treatment. BiPO4, as a promising photocatalyst for environmental purification, still suffers from small specific surface area and relative low photocatalytic activity. Herein, BiPO4–SiO2 hybrid hydrogels were successfully fabricated by facile two-step methods. BiPO4 nanorods are uniformly compounded with SiO2 spheres, and the specific surface area of BiPO4 is enhanced by 2.3 times after forming a network structure. 90% BiPO4–SiO2 hybrid hydrogel presents the highest photocatalytic degradation activities, which is 3.4 times that of pure BiPO4. The total organic carbon removal ability of BiPO4 is also enhanced by 1.1 times after constructing a hybrid hydrogel. The pollutant removal enhancement of BiPO4–SiO2 hybrid hydrogel can be attributed to the synergistic effect of adsorption–enrichment and photocatalytic degradation. Our results may provide a promising way to greatly enhance the pollutant removal performance of BiPO4, which may promote the industrial application of BiPO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Shekofteh-Gohari M, Habibi-Yangjeh A, Abitorabi M, Rouhi A (2018) Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit Rev Environ Sci Technol 48:806–857

    CAS  Google Scholar 

  2. Wang YJ, Wang FM, He J (2013) Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5:11291–11297

    CAS  Google Scholar 

  3. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    CAS  Google Scholar 

  4. Gani KM, Kazmi AA (2016) Phthalate contamination in aquatic environment: a critical review of the process factors that influence their removal in conventional and advanced wastewater treatment. Crit Rev Environ Sci Technol 46:1402–1439

    CAS  Google Scholar 

  5. Venkata Mohan S, Shailaja S, Rama Krishna M, Sarma PN (2007) Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study. J Hazard Mater 146:278–282

    CAS  Google Scholar 

  6. Pan CS, Zhu YF (2010) New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ Sci Technol 44:5570–5574

    CAS  Google Scholar 

  7. Wu ZH, Liu J, Tian QY, Wu W (2017) Efficient visible light formaldehyde oxidation with 2D p-n heterostructure of BiOBr/BiPO4 nanosheets at room temperature. ACS Sustain Chem Eng 5:5008–5017

    CAS  Google Scholar 

  8. Zheng X, Wang J, Liu J, Wang Z, Chen S, Fu X (2019) Photocatalytic degradation of benzene over different morphology BiPO4: revealing the significant contribution of high-energy facets and oxygen vacancies. Appl Catal B Environ 243:780–789

    CAS  Google Scholar 

  9. Zhang YF, Selvaraj R, Sillanpää M, Kim Y, Tai CW (2014) The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chem Eng J 245:117–123

    CAS  Google Scholar 

  10. Darkwah WK, Adormaa BB, Christelle Sandrine MK, Ao Y (2019) Modification strategies for enhancing the visible light responsive photocatalytic activity of the BiPO4 nano-based composite photocatalysts. Catal Sci Technol 9:546–566

    CAS  Google Scholar 

  11. Zhu YY, Liu YF, Lv YH, Wang H, Liang Q, Zhu YF (2013) Reflux preparation and photocatalytic performance of bismuth phosphate nanorods. Acta Phys Chim Sin 29:576–584

    CAS  Google Scholar 

  12. Cao J, Xu BY, Lin L, Chen SF (2013) Highly improved visible light photocatalytic activity of BiPO4 through fabricating a novel p–n heterojunction BiOI/BiPO4 nanocomposite. Chem Eng J 228:482–488

    CAS  Google Scholar 

  13. Su YN, Tan GQ, Liu T, Lv L, Wang Y, Zhang XL, Yue ZW, Ren HJ, Ao X (2018) Photocatalytic properties of Bi2WO6/BiPO4 Z-scheme photocatalysts induced by double internal electric fields. Appl Surf Sci 457:104–114

    CAS  Google Scholar 

  14. Ding K, Yu D, Wang W, Gao P, Liu BJ (2018) Fabrication of multiple hierarchical heterojunction Ag@AgBr/BiPO4/r-GO with enhanced visible-light-driven photocatalytic activities towards dye degradation. Appl Surf Sci 445:39–49

    CAS  Google Scholar 

  15. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Google Scholar 

  16. Ganguli S, Hazra C, Chatti M, Samanta T, Mahalingam V (2016) A highly efficient UV–Vis–NIR active Ln3+-doped BiPO4/BiVO4 nanocomposite for photocatalysis application. Langmuir 32:247–253

    CAS  Google Scholar 

  17. Huang HW, Qi HJ, He Y, Tian N, Zhang YH (2013) Enhanced photocatalytic activity of Eu3+- and Gd3+-doped BiPO4. J Mater Res 28:2977–2984

    CAS  Google Scholar 

  18. Pan CS, Xu J, Wang YJ, Li D, Zhu YF (2012) Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv Funct Mater 22:1518–1524

    CAS  Google Scholar 

  19. Zhu HJ, Li ZK, Yang JH (2018) A novel composite hydrogel for adsorption and photocatalytic degradation of bisphenol A by visible light irradiation. Chem Eng J 334:1679–1690

    CAS  Google Scholar 

  20. Facchi DP, Cazetta AL, Canesin EA, Almeida VC, Bonafé EG, Kipper MJ, Martins AF (2018) New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems. Chem Eng J 337:595–608

    CAS  Google Scholar 

  21. Zhang M, Jiang WJ, Liu D, Wang J, Liu YF, Zhu YY, Zhu YF (2016) Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl Catal B Environ 183:263–268

    CAS  Google Scholar 

  22. Jiang WJ, Luo WJ, Zong R, Yao WQ, Li ZP, Zhu YF (2016) Polyaniline/carbon nitride nanosheets composite hydrogel: a separation-free and high-efficient photocatalyst with 3D hierarchical structure. Small 12:4370–4378

    CAS  Google Scholar 

  23. Guo YH, Wang YH, Hu CW, Wang YH, Wang EB (2000) Microporous polyoxometalates POMs/SiO2: synthesis and photocatalytic degradation of aqueous organocholorine pesticides. Chem Mater 12:3501–3508

    CAS  Google Scholar 

  24. Yan N, Zhao Z, Li Y, Wang F, Zhong H, Chen QW (2014) Synthesis of novel two-phase Co@SiO2 nanorattles with high catalytic activity. Inorg Chem 53:9073–9079

    CAS  Google Scholar 

  25. Beltran-Osuna AA, Cao B, Cheng G, Jana SC, Espe MP, Lama B (2012) New antifouling silica hydrogel. Langmuir 28:9700–9706

    CAS  Google Scholar 

  26. Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, Jones CD, Espina V, Patanarut A, Zhou WD, Ross MM, Tessitore A, Petricoin EF, Liotta LA (2008) Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett 8:350–361

    CAS  Google Scholar 

  27. Liu YF, Zhu YY, Xu J, Bai XJ, Zong RL, Zhu YF (2013) Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl Catal B Environ 142:561–567

    Google Scholar 

  28. Pan CS, Xu J, Chen Y, Zhu YF (2012) Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B. Appl Catal B Environ 115:314–319

    Google Scholar 

  29. Liu D, Cai WB, Wang YG, Zhu YF (2018) Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. Appl Catal B Environ 236:205–211

    CAS  Google Scholar 

  30. Wang JC, Long YC, Sun Y, Zhang XQ, Yang H, Lin BP (2017) Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@SiO2 nanofibers. Appl Surf Sci 426:437–445

    CAS  Google Scholar 

  31. Liu YF, Lv YH, Zhu YY, Liu D, Zong RL, Zhu YF (2014) Fluorine mediated photocatalytic activity of BiPO4. Appl Catal B Environ 147:851–857

    CAS  Google Scholar 

  32. Jin C, Zheng RY, Guo Y, Xie JL, Zhu YX, Xie YC (2009) Hydrothermal synthesis and characterization of phosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation. J Mol Catal A Chem 313:44–48

    CAS  Google Scholar 

  33. Fulekar MH, Singh A, Dutta DP, Roy M, Ballal A, Tyagi AK (2014) Ag incorporated nano BiPO4: sonochemical synthesis, characterization and improved visible light photocatalytic properties. RSC Adv 4:10097–10107

    CAS  Google Scholar 

  34. Wang YJ, Chen J, Liu LM, Xi XX, Li YM, Geng ZL, Jiang GY, Zhao Z (2019) Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale 11:1618–1625

    CAS  Google Scholar 

  35. Ji TH, Yang F, Lv YY, Zhou JY, Sun JY (2009) Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts. Mater Lett 63:2044–2046

    CAS  Google Scholar 

  36. Jiang J, Zhang X, Sun PB, Zhang LZ (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555–20564

    CAS  Google Scholar 

  37. Wang YJ, Shi R, Lin J, Zhu YF (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929

    CAS  Google Scholar 

  38. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    CAS  Google Scholar 

  39. Zhang M, Luo WJ, Wei Z, Jiang WJ, Liu D, Zhu YF (2016) Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Appl Catal B Environ 194:105–110

    CAS  Google Scholar 

  40. Wang YJ, Bai WK, Wang HQ, Jiang Y, Han SL, Sun HQ, Li YM, Jiang GY, Zhao Z, Huan Q (2017) Promoted photoelectrocatalytic hydrogen evolution of a type II structure via an Al2O3 recombination barrier layer deposited using atomic layer deposition. Dalton Trans 46:10734–10741

    CAS  Google Scholar 

  41. Baram N, Ein-Eli Y (2010) Electrochemical impedance spectroscopy of porous TiO2 for photocatalytic applications. J Phys Chem C 114:9781–9790

    CAS  Google Scholar 

  42. Wang YJ, Bai XJ, Pan CS, He J, Zhu YF (2012) Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J Mater Chem 22:11568–11573

    CAS  Google Scholar 

  43. Xu FY, Meng K, Cheng B, Yu JG, Ho WK (2019) Enhanced photocatalytic activity and selectivity for CO2 reduction over a TiO2 nanofibre mat using Ag and MgO as Bi-cocatalyst. ChemCatChem 11:465–472

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant Nos. 21777080, 91645108, 21878331, 21603273), Special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (Grant No. 18K08ESPCT) and Science Foundation of China University of Petroleum, Beijing (Grant No. 2462019QNXZ05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Wang or Wenqing Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, W., Liu, M. et al. Enhanced removal of pollutant in a BiPO4–SiO2 hybrid hydrogel via an adsorption–enrichment and in situ photocatalysis synergy. J Mater Sci 55, 7441–7452 (2020). https://doi.org/10.1007/s10853-020-04529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04529-2

Navigation