Skip to main content
Log in

Enhancement of ionic conductivity in Li0.5La0.5TiO3 with Ag nanoparticles

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Li0.5La0.5TiO3 (LLTO)/nano-Ag composite electrolytes were synthesized by a sol–gel process. Through the addition of nano-Ag powder with a relatively low melting point, the lattice parameter, grain size and morphology of LLTO-based electrolytes were tailored. The results revealed that Ag was oxidized into Ag+ during high-temperature sintering in air, and partial Ag+ entered into LLTO lattice and improved the bulk ionic conductivity. Meanwhile, owing to the liquid-phase-assisted grain growth induced by Ag, the grain size of LLTO was increased and the grain boundary conductivity was substantially improved. As a consequence, the bulk and grain boundary conductivities of LLTO were simultaneously enhanced through a facile nano-Ag combination, thereby leading to the highest total conductivity of 4.2 × 10−5 S/cm in the sample with 5 wt% Ag, which is remarkably superior to that (2.8 × 10−5 S/cm) of pure LLTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chem Eur J 17:14326–14346. https://doi.org/10.1002/chem.201101486

    Article  CAS  Google Scholar 

  2. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61:759–770. https://doi.org/10.1016/j.actamat.2012.10.034

    Article  CAS  Google Scholar 

  3. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ion 180:911–916. https://doi.org/10.1016/j.ssi.2009.03.022

    Article  CAS  Google Scholar 

  4. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  5. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569. https://doi.org/10.1016/j.jpowsour.2010.01.076

    Article  CAS  Google Scholar 

  6. Biensan P, Simon B, Peres JP et al (1999) On safety of lithium-ion cells. J Power Sources 81:906–912. https://doi.org/10.1016/s0378-7753(99)00135-4

    Article  Google Scholar 

  7. Li Y, Sun Y, Pei A et al (2018) Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Central Sci 4:97–104. https://doi.org/10.1021/acscentsci.7b00480

    Article  CAS  Google Scholar 

  8. Wu S, Dong Z, Boey F, Wu P (2009) Electronic structure and vacancy formation of Li3N. Appl Phys Lett 94:172104. https://doi.org/10.1063/1.3126449

    Article  CAS  Google Scholar 

  9. Taminato S, Okumura T, Takeuchi T, Kobayashi H (2018) Fabrication and charge-discharge reaction of all solid-state lithium battery using Li4-2xGe1-xSxO4 electrolyte. Solid State Ion 326:52–57. https://doi.org/10.1016/j.ssi.2018.09.011

    Article  CAS  Google Scholar 

  10. He L, Sun Q, Chen C et al (2019) Failure mechanism and interface engineering for NASICON-structured all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 11:20895–20904. https://doi.org/10.1021/acsami.9b05516

    Article  CAS  Google Scholar 

  11. Thangadurai V, Kaack H, Weppner WJF (2003) Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86:437–440. https://doi.org/10.1111/j.1151-2916.2003.tb03318.x

    Article  CAS  Google Scholar 

  12. Inaguma Y, Nakashima M (2013) A rechargeable lithium-air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J Power Sources 228:250–255. https://doi.org/10.1016/j.jpowsour.2012.11.098

    Article  CAS  Google Scholar 

  13. Inaguma Y, Chen LQ, Itoh M et al (1993) High ionic-conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693. https://doi.org/10.1016/0038-1098(93)90841-a

    Article  CAS  Google Scholar 

  14. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990. https://doi.org/10.1021/cm0300516

    Article  CAS  Google Scholar 

  15. Swamy DT, Babu KE, Veeraiah V (2013) Evidence for high ionic conductivity in lithium-lanthanum titanate Li0.29La0.57TiO3. Bull Mater Sci 36:1115–1119. https://doi.org/10.1007/s12034-013-0551-3

    Article  CAS  Google Scholar 

  16. Jay EE, Rushton MJD, Chroneos A, Grimes RW, Kilner JA (2015) Genetics of superionic conductivity in lithium lanthanum titanates. Phys Chem Chem Phys 17:178–183. https://doi.org/10.1039/c4cp04834b

    Article  CAS  Google Scholar 

  17. He LX, Yoo HI (2003) Effects of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3-x)(1+y/2)(MyTi1-y)O3 (M = Al, Cr). Electrochim Acta 48:1357–1366. https://doi.org/10.1016/s0013-4686(02)00848-4

    Article  CAS  Google Scholar 

  18. Wang GX, Yao P, Bradhurst DH, Dou SX, Liu HK (2000) Structure characteristics and lithium ionic conductivity of La(0.57-2x/3)SrxLi0.3TiO3 perovskites. J Mater Sci 35:4289–4291. https://doi.org/10.1023/a:1004876100938

    Article  CAS  Google Scholar 

  19. Morata-Orrantia A, Garcia-Martin S, Alario-Franco MA (2003) New La2/3-xSrxLixTiO3 solid solution: structure, microstructure, and Li+ conductivity. Chem Mater 15:363–367. https://doi.org/10.1021/cm020609u

    Article  CAS  Google Scholar 

  20. Zhang Q, Schmidt N, Lan J, Kim W, Cao G (2014) A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte. Chem Commun 50:5593–5596. https://doi.org/10.1039/c4cc00335g

    Article  CAS  Google Scholar 

  21. Ban CW, Choi GM (2001) The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ion 140:285–292. https://doi.org/10.1016/s0167-2738(01)00821-9

    Article  CAS  Google Scholar 

  22. Zhang H, Liu X, Qi Y, Liu V (2013) On the La2/3-xLi3xTiO3/Al2O3 composite solid-electrolyte for Li-ion conduction. J Alloy Compd 577:57–63. https://doi.org/10.1016/j.jallcom.2013.04.195

    Article  CAS  Google Scholar 

  23. Chen K, Huang M, Shen Y, Lin Y, Nan CW (2012) Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochimica Acta 80:133–139. https://doi.org/10.1016/j.electacta.2012.06.115

    Article  CAS  Google Scholar 

  24. Abhilash KP, Selvin PC, Nalini B, Nithyadharseni P, Pillai BC (2013) Investigations on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries. Ceram Int 39:947–952. https://doi.org/10.1016/j.ceramint.2012.07.011

    Article  CAS  Google Scholar 

  25. Bohnke O, Bohnke C, Sid’Ahmed JO et al (2001) Lithium ion conductivity in new perovskite oxides [AgyLi1-y]3xLa2/3-x1/3-2xTiO3 (x = 0.09 and 0 <= y <= 1). Chem Mater 13:1593–1599. https://doi.org/10.1021/cm001207u

    Article  CAS  Google Scholar 

  26. Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208. https://doi.org/10.1103/PhysRevA.66.013208

    Article  CAS  Google Scholar 

  27. Kaptay G, Matsushita T, Mukai K, Ohuchi T (2004) On different modifications of the capillary model of penetration of inert liquid metals into porous refractories and their connection to the pore size distribution of the refractories. Metall Mater Trans B Process Metall Mater Process Sci 35:471–486. https://doi.org/10.1007/s11663-004-0048-y

    Article  Google Scholar 

  28. Falk LKL (2004) Imaging and microanalysis of liquid phase sintered silicon-based ceramic microstructures. J Mater Sci 39:6655–6673. https://doi.org/10.1023/B:JMSC.0000045598.74823.c6

    Article  CAS  Google Scholar 

  29. Tian G, Chen Y, Meng X et al (2013) Hierarchical composite of Ag/AgBr nanoparticles supported on Bi2MoO6 hollow spheres for enhanced visible-light photocatalytic performance. ChemPlusChem 78:117–123. https://doi.org/10.1002/cplu.201200198

    Article  CAS  Google Scholar 

  30. Horikawa T, Mikami N, Makita T et al (1993) Dielectric properties of (Ba, Sr)TiO3 thin-films deposited by Rf-sputtering. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 32:4126–4130. https://doi.org/10.1143/jjap.32.4126

    Article  CAS  Google Scholar 

  31. Liang D, Zhu X, Zhu J, Zhu J, Xiao D (2014) Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr, Ti)O3 lead-free piezoelectric ceramics. Ceram Int 40:2585–2592. https://doi.org/10.1016/j.ceramint.2013.10.084

    Article  CAS  Google Scholar 

  32. Wang Q, Zhang J, He X, Cao G, Hu J, Pan J, Shao G (2019) Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3-based solid batteries. J Eur Ceram Soc 39:3332–3337. https://doi.org/10.1016/j.jeurceramsoc.2019.04.045

    Article  CAS  Google Scholar 

  33. Xu H, Xuan M, Xiao W, Shen Y, Li Z, Wang Z, Hu J, Shao G (2019) Lithium ion conductivity in double anti-perovskite Li6.5OS1.5I1.5: alloying and boundary effects. ACS Appl Energy Mater 2:6288–6294. https://doi.org/10.1021/acsaem.9b00861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2013CB934700), the Key Research and Development Project of Sichuan Province, China (Grant No. 2017GZ0396), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, M., Jiang, Y., Huang, Y. et al. Enhancement of ionic conductivity in Li0.5La0.5TiO3 with Ag nanoparticles. J Mater Sci 55, 3750–3759 (2020). https://doi.org/10.1007/s10853-019-04180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04180-6

Navigation