Skip to main content
Log in

Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium superionic conductor (LISICON) Li1.3Al0.3Ti1.7(PO4)3 (LATP) is known as a high lithium-ion conductive solid electrolyte. The top-down approach was utilized in this work to synthesize LATP in which Ag with concentrations of 1, 2, 4, 6, 8 wt% was incorporated in the host material and the performance of the fabricated solid electrolyte was examined and compared with that of the pristine material. Substitution of Li+ by Ag+ in LATP structure resulted in bulk conductivity of 1.1 × 10–3 S cm−1 and grain boundary conductivity of 1.0 × 10–3 S cm−1 at 25 °C for the optimum Ag concentration of 4 wt%. The calcination process was performed in several temperature steps to prevent the release of volatile substances. To obtain a pure LATP structure, phase analyses were performed using X-ray diffraction (XRD) patterns to improve the synthesis conditions. High density, low unwanted and amorphous phases and increased ionic conductivity were achieved by applying sintering process and optimizing the amounts of additives. Effective surface area of about 16 g m−2 was measured using Brunauer–Emmett–Teller (BET) analysis. Negligible decomposition of the products was observed by employing thermal analyses (TGA/DSC). The bulk conductivity of the fabricated solid electrolyte is among the highest reported bulk conductivity for LATP and the grain boundary conductivity revealed by electrochemical impedance spectroscopy (EIS) test is higher than other reported values for LATP. So, the fabricated solid electrolyte is recommended for using in electrically charged solid-state lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, The electrical properties of ceramic electrolytes for LiMxTi2-x(PO4)3+yLi2O, M = Ge, Sn, Hf, and Zr systems. J. Electrochem. Soc. 140, 1827–1833 (1993)

    Article  CAS  Google Scholar 

  2. J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon et al., A review of lithium and non-lithium based solid state batteries. J. Power Sources 282, 299–322 (2015)

    Article  CAS  Google Scholar 

  3. A. Kraytsberg, Ein-Eli Y Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2011)

    Article  CAS  Google Scholar 

  4. A.J. Moulson, Herbert JM Electroceramics: Materials, Properties, Applications (Wiley, New York, 2003)

    Book  Google Scholar 

  5. H. Tuller, Handbook of Electronic and Photonic Materials (Springer, New York, 2017)

    Google Scholar 

  6. E. Barsoukov, Macdonald JR Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2018)

    Book  Google Scholar 

  7. A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 2014)

    Google Scholar 

  8. E.D. Zanotto, A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 89, 19–27 (2010)

    CAS  Google Scholar 

  9. P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ionics 180, 911–916 (2009)

    Article  CAS  Google Scholar 

  10. M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.L. Chou, Dou SX NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10, 1480 (2019)

    Article  Google Scholar 

  11. Y. Sun, Lithium ion conducting membranes for lithium-air batteries. Nano Energy 2(5), 801–816 (2013)

    Article  CAS  Google Scholar 

  12. P. Maldonado-Manso, E.R. Losilla, M. Martínez-Lara, M.A. Aranda, S. Bruque, F.E. Mouahid et al., High lithium ionic conductivity in the Li1+ x Al x Ge y Ti2-x-y(PO4)3 NASICON series. Chem. Mater. 15, 1879–1885 (2003)

    Article  CAS  Google Scholar 

  13. A. Svitan’Ko, S. Novikova, D. Safronov, A. Yaroslavtsev, Cation mobility in Li1+x Ti2–x Crx (PO4)3 NASICON-type phosphates. Inorg. Mater. 47, 1391–1395 (2011)

    Article  Google Scholar 

  14. E. Jeong, K.Y. Yoon, H.A. Jung, T. Nakayma, M.J. Ji, H. Hwang, Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method. Appl. Surf. Sci. 473, 622–626 (2019)

    Article  Google Scholar 

  15. J. Liu, T. Liu, Y. Pu, M. Guan, Z. Tang, F. Ding, Z. Xu, Y. Li, Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv. 7, 46545–46552 (2017)

    Article  CAS  Google Scholar 

  16. W.C. West, J.F. Whitacre, J.R. Lim, Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films. J. Power Sources 126, 134–138 (2004)

    Article  CAS  Google Scholar 

  17. J.P. Han, B. Zhang, L.Y. Wang, H.L. Zhu, Y.X. Qi, L.W. Yin, H. Li, N. Lun, Y.J. Bai, Li1.3Al0.3Ti1.7(PO4)3 Behaving as a fast ionic conductor and bridge to boost the electrochemical performance of Li4Ti5O12. Chem. Eng. 6(6), 7273–7282 (2018)

    CAS  Google Scholar 

  18. J.G. Kim, D. Shi, M.S. Park, G. Jeong, Y.U. Heo, M. Seo, Y.J. Kim, J.H. Kim, S.X. Dou, Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 6(5), 365–372 (2013)

    Article  CAS  Google Scholar 

  19. K. Arbi, S. Mandal, J.M. Rojo, J. Sanz, Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem. Mater. 14, 1091–1097 (2002)

    Article  CAS  Google Scholar 

  20. A. Mertens, S. Yu, N. Schön, D.C. Gunduz, H. Tempel, R. Schierholz, F. Hausen, H. Kungl, J. Granwehr, R.A. Eichel, Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Solid State Ionics 309, 180–186 (2017)

    Article  CAS  Google Scholar 

  21. K.P. Abhilash, P. Christopher Selvin, B. Nalini, P. Nithyadharseni, on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries. Ceram. Int. 39, 947–952 (2013)

    Article  CAS  Google Scholar 

  22. E. Zhao, F. Ma, Y. Jin, K. Kanamura, Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: the effect of dispersant. J. Alloys Compds. 680, 646–653 (2016)

    Article  CAS  Google Scholar 

  23. J.S. Lee, C.M. Chang, Y.I. Lee, J.H.S.H. Lee Hong, Spark plasma sintering (SPS) of NASICON ceramics. J. Am. Ceram. Soc. 87, 305–307 (2004)

    Article  CAS  Google Scholar 

  24. K. Ullah, A. Ullah, A. Aldalbahi, J. Chung, W.C. Oh, Enhanced visible light photocatalytic activity and hydrogen evolution through novel heterostructure AgI–FG–TiO2 nanocomposites. J. Mol. Catal. A 410, 242–252 (2015)

    Article  CAS  Google Scholar 

  25. Y. Liu, J. Liu, Q. Sun, D. Wang, K.R. Adair, J. Liang, C. Zhang, L. Zhang, S. Lu, H. Huang, X. Song, X. Sun, Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 11(31), 27890–27896 (2019)

    Article  CAS  Google Scholar 

  26. S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.L. Taberna, P. Simon, F. Ansart, Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. J. Eur. Ceram. Soc. 33(6), 1145–1153 (2013)

    Article  CAS  Google Scholar 

  27. G. Tan, F. Wu, L. Li, Y. Liu, Chen R Magnetron sputtering preparation of nitrogen-incorporated lithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116, 3817–3826 (2012)

    Article  CAS  Google Scholar 

  28. S.V. Rathan, G.X. Govindaraj, Thermal and electrical relaxation studies in Li(4+x) TixNb1− xP3O12 (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sci. 12, 730–735 (2012)

    Article  Google Scholar 

  29. N. Mustaffa, S. Adnan, M. Sulaiman, Mohamed N Low-temperature sintering effects on NASICON-structured LiSn2P3 O 12 solid electrolytes prepared via citric acid-assisted sol-gel method. Ionics 21, 955–965 (2015)

    Article  CAS  Google Scholar 

  30. G. Govindaraj, C.R. Mariappan, Synthesis, characterization and ion dynamic studies of NASICON type glasses. Solid State Ionics 147(1–2), 49–59 (2002)

    Article  CAS  Google Scholar 

  31. A. Rodrigues, J. Narváez-Semanate, A. Cabral, A. Rodrigues, Determination of crystallization kinetics parameters of a Li1.5Al0.5Ge1.5 (PO4)3 (LAGP) glass by differential scanning calorimetry. Mater. Res. 16, 811–816 (2013)

    Article  CAS  Google Scholar 

  32. J.L. Narváez-Semanate, A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181, 1197–1204 (2010)

    Article  Google Scholar 

  33. V.M. Fokin, A.A. Cabral, R.M. Reis, M.L. Nascimento, Zanotto ED Critical assessment of DTA–DSC methods for the study of nucleation kinetics in glasses. J. Non-Cryst. Solids 356, 358–367 (2010)

    Article  CAS  Google Scholar 

  34. K. Ullah, I.J. Kim, S. Yang, W.C. Oh, Preparation of highly expanded graphene with large surface area and its additional conductive effect for EDLC performance. J. Mater. Sci. 26, 6945–6953 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to research council of the University of Kashan for providing financial support to undertake this work (Grant No. 785216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Zahedifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soweizy, M., Zahedifar, M. & Karimi, M. Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity. J Mater Sci: Mater Electron 31, 9614–9621 (2020). https://doi.org/10.1007/s10854-020-03504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03504-6

Navigation