Skip to main content
Log in

Electrochemical Characteristics of Li4Ti5O12/Ag Composite Nanobelts Prepared via Electrospinning

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Li4Ti5O12/Ag composite nanobelts with an average width of ca. 1.12 μm were successfully synthesized via a facile electrospinning, and the average width is ca. 1.12 μm. The Li4Ti5O12/Ag composites show perfect initial discharge capacity (178.72 mA h g–1 at 0.1 C), better rate capability (131.70 mA h g–1 after cycled at 15 C) and super cycling stability (172.21 mA h g–1 after 100 cycles at 0.2 C) compared to pure Li4Ti5O12 nanobelts when used as anode materials for lithium ion batteries. The excellent electrochemical performance is explained by the nanostructure of obtained samples which could provide an effective ion and electron transport in the longitudinal direction. The addition of Ag could enhance charge transfer due to increased electronic conductivity. Our new findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anode materials for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Armand and J. M. Tarascon, Nature (London, U.K.) 451, 652 (2008).

    Article  CAS  Google Scholar 

  2. T.-F. Yi, Z.-K. Fang, Y. Xie, Y.-R. Zhu, and S.‑Y. Yang, ACS Appl. Mater. Interfaces 6, 20205 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, J. Power Sources 68, 277 (1997).

    Article  CAS  Google Scholar 

  4. S. S. Zhang, K. Xu, and T. R. Jow, J. Power Sources 160, 1349 (2006).

    Article  CAS  Google Scholar 

  5. S. Yang, X. Feng, and K. Mullen, Adv. Mater. 23, 3575 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. J. Liu, K. Song, P. A. van Aken, J. Maier, and Y. Yu, Nano Lett. 14, 2597 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen, Y. Liu, and Y. Huang, Nano Energy 10, 163 (2014).

    Article  CAS  Google Scholar 

  8. Y. Gao, Z. Wang, and L. Chen, J. Power Sources 245, 684 (2014).

    Article  CAS  Google Scholar 

  9. W. K. Pang, V. K. Peterson, N. Sharma, J.-J. Shiu, and S.-H. Wu, Chem. Mater. 26, 2318 (2014).

    Article  CAS  Google Scholar 

  10. S. Li, J. Guo, Q. Ma, Y. Yang, X. Dong, M. Yang, W. Yu, J. Wang, and G. Liu, J. Solid State Electron. 21, 2779 (2017).

    Article  CAS  Google Scholar 

  11. J.-G. Kim, M.-S. Park, S. M. Hwang, Y.-U. Heo, T. Liao, Z. Sun, J. H. Park, K. J. Kim, G. Jeong, Y.‑J. Kim, J. H. Kim, and S. X. Dou, ChemSusChem 7, 1451 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. J.-G. Kim, D. Shi, M.-S. Park, G. Jeong, Y.-U. Heo, M. Seo, Y.-J. Kim, J. H. Kim, and S. X. Dou, Nano Res. 6, 365 (2013).

    Article  CAS  Google Scholar 

  13. M. Marinaro, F. Nobili, R. Tossici, and R. Marassi, Electrochim. Acta 89, 555 (2013).

    Article  CAS  Google Scholar 

  14. C. C. Li, Q. H. Li, L. B. Chen, and T. H. Wang, ACS Appl. Mater. Interfaces 4, 1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. M. Krajewski, M. Michalska, B. Hamankiewicz, D. Ziolkowska, K. P. Korona, J. B. Jasinski, M. Kaminska, L. Lipinska, and A. Czerwinski, J. Power Sources 245, 764 (2014).

    Article  CAS  Google Scholar 

  16. H. Zhang and Y. Chen, J. Li, C. He, and Y. Chen, Int. J. Hydrogen Energy 39, 16096 (2014).

    Article  CAS  Google Scholar 

  17. H. Xu, X. Hu, W. Luo, Y. Sun, Z. Yang, C. Hu, and Y. Huang, ChemElectroChem 1, 611 (2014).

    Article  CAS  Google Scholar 

  18. M. M. Rahman, J.-Z. Wang, M. F. Hassan, D. Wexler, and H. K. Liu, Adv. Energy Mater. 1, 212 (2011).

    Article  CAS  Google Scholar 

  19. H. Park, T. Song, H. Han, and U. Paik, J. Power Sources 244, 726 (2013).

    Article  CAS  Google Scholar 

  20. Z. Liu, N. Zhang, Z. Wang, and K. Sun, J. Power Sources 205, 479 (2012).

    Article  CAS  Google Scholar 

  21. S. Hyun-Woo, L. Duk Kyu, C. In-Sun, H. Kug Sun, and K. Dong-Wan, Nanotechnology 21, 255706 (2010).

    Article  CAS  Google Scholar 

  22. X. Li, P. Huang, Y. Zhou, H. Peng, W. Li, M. Qu, and Z. Yu, Mater. Lett. 133, 289 (2014).

    Article  CAS  Google Scholar 

  23. G. Huang, F. Zhang, L. Zhang, X. Du, J. Wang, and L. Wang, J. Mater. Chem. A 2, 8048 (2014).

    Article  CAS  Google Scholar 

  24. G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, ACS Nano 9, 1592 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Y. W. Ko, P. F. Teh, S. S. Pramana, C. L. Wong, T. Su, L. Li, and S. Madhavi, ChemElectroChem 2, 837 (2015).

    Article  CAS  Google Scholar 

  26. Z. Li, G. Liu, M. Guo, L.-X. Ding, S. Wang, and H. Wang, Electrochim. Acta 173, 131 (2015).

    Article  CAS  Google Scholar 

  27. H. Shao, W. Yu, Q. Ma, X. Wang, X. Dong, Z. Liu, J. Wang, G. Liu, and L. Chang, RSC Adv. 7, 32850 (2017).

  28. C. Song and X. Dong, Russ. J. Phys. Chem. A 87, 1545 (2013).

    Article  CAS  Google Scholar 

  29. G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar, and M. Srinivasan, J. Mater. Chem. 20, 6720 (2010).

    Article  CAS  Google Scholar 

  30. P. F. Teh, Y. Sharma, S. S. Pramana, and M. Srinivasan, J. Mater. Chem. 21, 14999 (2011).

    Article  CAS  Google Scholar 

  31. P. F. Teh, Y. Sharma, Y. W. Ko, S. S. Pramana, and M. Srinivasan, RSC Adv. 3, 2812 (2013).

  32. S. Kalluri, K. H. Seng, Z. Guo, H. K. Liu, and S. X. Dou, RSC Adv. 3, 25576 (2013).

  33. W. Ren, Z. Zheng, Y. Luo, W. Chen, C. Niu, K. Zhao, M. Yan, L. Zhang, J. Meng, and L. Mai, J. Mater. Chem. A 3, 19850 (2015).

    Article  CAS  Google Scholar 

  34. V. Aravindan, J. Sundaramurthy, P. Suresh Kumar, Y.‑S. Lee, S. Ramakrishna, and S. Madhavi, Chem. Commun. 51, 2225 (2015).

    Article  CAS  Google Scholar 

  35. J. Wu, N. Wang, Y. Zhao, and L. Jiang, J. Mater. Chem. A 1, 7290 (2013).

    Article  CAS  Google Scholar 

  36. B. Kang and G. Ceder, Nature (London, U.K.) 458, 190 (2009).

    Article  CAS  Google Scholar 

  37. C. Wang, S. Wang, Y.-B. He, L. Tang, C. Han, C. Yang, M. Wagemaker, B. Li, Q.-H. Yang, J.-K. Kim, and F. Kang, Chem. Mater. 27, 5647 (2015).

    Article  CAS  Google Scholar 

  38. X. Xi, Q. Ma, X. Dong, D. Li, W. Yu, J. Wang, and G. Liu, J. Mater. Sci.: Mater. El. (2018). https://doi.org/10.1007/s10854-018-8700-5

  39. X. Xi, Q. Ma, X. Dong, D. Li, W. Yu, J. Wang, and G. Liu, ChemPlusChem (2018). https://doi.org/10.1002/cplu.201800030

  40. X. Li, Q. Ma, J. Tian, X. Xi, D. Li, X. Dong, W. Yu, X. Wang, J. Wang, and G. Liu, Nanoscale 9, 18918 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. J. Tian, Q. Ma, W. Yu, X. Dong, Y. Yang, B. Zhao, J. Wang, and G. Liu, New J. Chem. 41, 13983 (2017).

    Article  CAS  Google Scholar 

  42. L. Fan, Q. Ma, J. Tian, D. Li, X. Xi, X. Dong, W. Yu, J. Wang, and G. Liu, RSC Adv. 7, 48702 (2017).

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province (20170101101JC), Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (2017C052-4), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th Five-Year Plan Period (JJKH20170608KJ), Youth Foundation of Changchun University of Science and Technology (no. XQNJJ-2016-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Yu or Xiangting Dong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, S., Yang, Y. et al. Electrochemical Characteristics of Li4Ti5O12/Ag Composite Nanobelts Prepared via Electrospinning. Russ. J. Phys. Chem. 93, 144–150 (2019). https://doi.org/10.1134/S0036024419010114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419010114

Keywords:

Navigation