Skip to main content
Log in

In vitro assessment of polyethylene glycol and polyvinylpyrrolidone as hydrophilic additives on bioseparation by polysulfone membranes

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Considering the continuous increment of morbidity in patients with renal disease, the improvement of polymeric membranes characteristics for haemodialysis is a challenging issue. The efficient removal of middle size uremic toxins, as well as biocompatibility is crucial characteristics to ameliorate chronic kidney disease patients’ outcomes. In this study, polysulfone membranes with different hydrophilic additives, molecular weight and concentrations were prepared by spin coating method, followed by phase inversion via immersion precipitation. The removal of urea, lysozyme and bovine serum albumin was studied using a miniaturized flow system, mimicking haemodialysis conditions. The optimal composition was 15.0 wt% of polysulfone and 2.5 wt% of polyvinylpyrrolidone K30. This selected membrane was fully permeable for urea, showed up to 50% rejection of lysozyme and very high rejection of albumin. The additive PVP K30 played important role in the improvement of porosity, without compromising the mechanical strength of the membrane. The biocompatibility of membrane was evaluated by material-induced haemolysis and platelet activation tests. The platelet activation and haemolysis were negligible, compared to other biocompatible materials. These results confirmed the haemocompatibility of the optimized membrane. Therefore, the membrane is not expected to modulate the biological response, when used for the haemodialysis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hill NR, Fatoba ST, Oke JL et al (2016) PLoS ONE 11:e0158765. https://doi.org/10.1371/journal.pone.0158765

    Article  CAS  Google Scholar 

  2. Ma KW, Greene EL, Raij L (1992) Am J Kidney Dis 19:505. https://doi.org/10.1016/S0272-6386(12)80827-4

    Article  CAS  Google Scholar 

  3. Levey AS, Coresh J (2012) Lancet 379:165. https://doi.org/10.1016/S0140-6736(11)60178-5

    Article  Google Scholar 

  4. Misra M (2008) Hemodial Int 12(Suppl 2):S25. https://doi.org/10.1111/j.1542-4758.2008.00320.x

    Article  Google Scholar 

  5. Sakai K (2000) Front Med Biol Eng 10:117

    Article  CAS  Google Scholar 

  6. A Karkar (2013) Advances in hemodialysis techniques. INTECH Open Access Publisher

  7. Dhondt A, Vanholder R, Van Biesen W, Lameire N (2000) Kidney Int Suppl 76:S47

    Article  CAS  Google Scholar 

  8. Vanholder RC, Glorieux GL, De Smet RV (2003) Hemodial Int 7:162. https://doi.org/10.1046/j.1492-7535.2003.00033.x

    Article  Google Scholar 

  9. Clark WR, Hamburger RJ, Lysaght MJ (1999) Kidney Int 56:2005. https://doi.org/10.1046/j.1523-1755.1999.00784.x

    Article  CAS  Google Scholar 

  10. Kohlova M, Amorim CG, Araujo A, Santos-Silva A, Solich P, Montenegro M (2019) J Artif Organs 22:14. https://doi.org/10.1007/s10047-018-1059-9

    Article  Google Scholar 

  11. Bowry SK, Gatti E, Vienken J (2011) Contrib Nephrol 173:110. https://doi.org/10.1159/000328960

    Article  CAS  Google Scholar 

  12. Urbani A, Sirolli V, Lupisella S et al (2012) Blood Transfus 10(Suppl 2):s101. https://doi.org/10.2450/2012.014S

    Article  Google Scholar 

  13. Deppisch R, Gohl H, Smeby L (1998) Nephrol Dial Transplant 13:1354

    Article  CAS  Google Scholar 

  14. Liu Y, Koops GH, Strathmann H (2003) J Membrane Sci 223:187. https://doi.org/10.1016/S0376-7388(03)00322-3

    Article  CAS  Google Scholar 

  15. Alcantar NA, Aydil ES, Israelachvili JN (2000) J Biomed Mater Res 51:343

    Article  CAS  Google Scholar 

  16. Bergström K, Holmberg K, Safranj A et al (1992) J Biomed Mater Res 26:779. https://doi.org/10.1002/jbm.820260607

    Article  Google Scholar 

  17. Butruk B, Trzaskowski M, Ciach T (2012) Mater Sci Eng C Mater Biol Appl 32:1601. https://doi.org/10.1016/j.msec.2012.04.050

    Article  CAS  Google Scholar 

  18. Namekawa K, Kaneko A, Sakai K, Kunikata S, Matsuda M (2011) J Artif Organs 14:52. https://doi.org/10.1007/s10047-011-0552-1

    Article  CAS  Google Scholar 

  19. Chang T, DeFine L, Alexander T, Kyu T (2015) J Biomed Mater Res B Appl Biomater 103:539. https://doi.org/10.1002/jbm.b.33215

    Article  CAS  Google Scholar 

  20. Kim JH, Min BR, Park HC, Won J, Kang YS (2001) J Appl Polym Sci 81:3481. https://doi.org/10.1002/app.1804

    Article  CAS  Google Scholar 

  21. Zhang YJ, Lin R, Yuan MY, Yue X (2013) Desalin Water Treat 51:3903. https://doi.org/10.1080/19443994.2013.781741

    Article  CAS  Google Scholar 

  22. Chakrabarty B, Ghoshal AK, Purkait MK (2008) J Membrane Sci 309:209. https://doi.org/10.1016/j.memsci.2007.10.027

    Article  CAS  Google Scholar 

  23. Chakrabarty B, Ghoshal A, Purkait M (2008) J Membrane Sci 315:36

    Article  CAS  Google Scholar 

  24. Abetz V, Brinkmann T, Dijkstra M et al (2006) Adv Eng Mater 8:328. https://doi.org/10.1002/adem.200600032

    Article  CAS  Google Scholar 

  25. Wang Z, Ma J, Wang P (2011) Desalin Water Treat 34:197. https://doi.org/10.5004/dwt.2011.2799

    Article  CAS  Google Scholar 

  26. Norrman K, Ghanbari-Siahkali A, Larsen NB (2005) Annual Reports Section C 101:174. https://doi.org/10.1039/b408857n

    Article  CAS  Google Scholar 

  27. Holda AK, Vankelecom IFJ (2015) J Appl Polym Sci. https://doi.org/10.1002/app.42130

    Article  Google Scholar 

  28. Young T-H, Chen L-W (1995) Desalination 103:233. https://doi.org/10.1016/0011-9164(95)00076-3

    Article  CAS  Google Scholar 

  29. Smolders CA, Reuvers AJ, Boom RM, Wienk IM (1992) J Membrane Sci 73:259. https://doi.org/10.1016/0376-7388(92)80134-6

    Article  CAS  Google Scholar 

  30. M Mulder (2000) in Wilson I PC, Cooke M (ed) Encyclopedia of Separation Sciences, 1 edn. Elsevier

  31. Kim IC, Lee KH (2003) J Appl Polym Sci 89:2562. https://doi.org/10.1002/app.12009

    Article  CAS  Google Scholar 

  32. Ma YX, Shi FM, Ma J, Wu MN, Zhang J, Gao CJ (2011) Desalination 272:51. https://doi.org/10.1016/j.desal.2010.12.054

    Article  CAS  Google Scholar 

  33. Sofiah H, Noraaini A, Marinah M (2010) Journal of Applied Sciences 10:3325

    Article  CAS  Google Scholar 

  34. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  35. Levine JM, Leon R, Steigmann F (1961) Clin Chem 7:488

    CAS  Google Scholar 

  36. Sinha MK, Purkait MK (2013) J Membrane Sci 437:7. https://doi.org/10.1016/j.memsci.2013.03.003

    Article  CAS  Google Scholar 

  37. Mahlicli FY, Altinkaya SA (2014) J Membrane Sci 449:27

    Article  CAS  Google Scholar 

  38. Vienken J (2013) Problemy Eksploatacji 3:7–16

    Google Scholar 

  39. Kim IC, Lee KH (2004) J Membrane Sci 230:183. https://doi.org/10.1016/j.memsci.2003.11.002

    Article  CAS  Google Scholar 

  40. Chen J, Li J, Zhan X, Han X, Chen C (2010) Front Chem Eng China 4:300

    Article  CAS  Google Scholar 

  41. Yoo SH, Kim JH, Jho JY, Won J, Kang YS (2004) J Membrane Sci 236:203. https://doi.org/10.1016/j.memsci.2004.02.017

    Article  CAS  Google Scholar 

  42. Zhao S, Wang Z, Wei X et al (2011) J Membrane Sci 385–386:110. https://doi.org/10.1016/j.memsci.2011.09.029

    Article  CAS  Google Scholar 

  43. Sivakumar M, Mohan DR, Rangarajan R (2006) J Membrane Sci 268:208. https://doi.org/10.1016/j.memsci.2005.06.017

    Article  CAS  Google Scholar 

  44. Matsuyama H, Maki T, Teramoto M, Kobayashi K (2003) Separ Sci Technol 38:3449. https://doi.org/10.1081/Ss-120023408

    Article  CAS  Google Scholar 

  45. Su BH, Fu P, Li Q et al (2008) J Mater Sci Mater Med 19:745. https://doi.org/10.1007/s10856-007-3006-9

    Article  CAS  Google Scholar 

  46. Chang T, Neelakandan C, Kyu T, Tseng Y-T, DeFine L, Alexander T (2014) Polymer 55:5235. https://doi.org/10.1016/j.polymer.2014.07.044

    Article  CAS  Google Scholar 

  47. Boom RM, Wienk IM, Vandenboomgaard T, Smolders CA (1992) J Membrane Sci 73:277. https://doi.org/10.1016/0376-7388(92)80135-7

    Article  CAS  Google Scholar 

  48. Cabasso I, Robert K, Klein E, Smith J (1977) J Appl Polym Sci 21:1883

    Article  CAS  Google Scholar 

  49. Sabri S, Najjar A, Manawi Y et al (2019) Membranes. https://doi.org/10.3390/membranes9020029

    Article  Google Scholar 

  50. Sethuraman A, Han M, Kane RS, Belfort G (2004) Langmuir 20:7779. https://doi.org/10.1021/la049454q

    Article  CAS  Google Scholar 

  51. Xu LC, Bauer JW, Siedlecki CA (2014) Colloids Surf B Biointerfaces 124:49. https://doi.org/10.1016/j.colsurfb.2014.09.040

    Article  CAS  Google Scholar 

  52. Jung B, Yoon JK, Kim B, Rhee HW (2004) J Membrane Sci 243:45. https://doi.org/10.1016/j.memsci.2004.06.011

    Article  CAS  Google Scholar 

  53. Moradihamedani P, Abdullah AHB (2016) Desalin Water Treat 57:25542

    Article  CAS  Google Scholar 

  54. Xu LC, Siedlecki CA (2007) Biomaterials 28:3273. https://doi.org/10.1016/j.biomaterials.2007.03.032

    Article  CAS  Google Scholar 

  55. Tegoulia VA, Cooper SL (2000) J Biomed Mater Res 50:291

    Article  CAS  Google Scholar 

  56. Sun SD, Yue YL, Huang XH, Meng DY (2003) J Membrane Sci 222:3. https://doi.org/10.1016/S0376-7388(03)00313-2

    Article  CAS  Google Scholar 

  57. Tsai H-A, Huang D-H, Ruaan R-C, Lai J-Y (2001) Ind Eng Chem Res 40:5917

    Article  CAS  Google Scholar 

  58. Ravishankar H, Roddick F, Navaratna D, Jegatheesan V (2018) J Environ Manage 213:168. https://doi.org/10.1016/j.jenvman.2018.02.063

    Article  CAS  Google Scholar 

  59. Seyfert UT, Biehl V, Schenk J (2002) Biomol Eng 19:91

    Article  CAS  Google Scholar 

  60. IOf Standardization (2002) Biological Evaluation of Medical Devices: Selection of Tests for Interactions with Blood. International Organization for Standardization

Download references

Acknowledgement

This work was financially supported by the Charles University Grant Agency, Project GAUK No. 860216 and by Specific Charles University Research Project, no. SVV 260 412; by the project EFSA-CDN (No. CZ.02.1.01/0.0/0.0/16_019/0000841) co-funded by European Regional Development Fund; European Union (Fundo Europeu de Desenvolvimento Regional POCI/01/0145/FEDER/007265) and National Funds under the Partnership Agreement PT2020 UID/QUI/50006/2019 with funding from FCT/MCTES through national funds; (CCDR-N)/NORTE2020/Portugal 2020 (Norte-01-0145-FEDER-000024) and PTDC/MEC-CAR/31322/2017. Acknowledgements to Susana Rocha, PhD and Maria Joao Valente, PhD for the biocompatibility tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Conceição B. S. M. Montenegro.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlová, M., Amorim, C.G., da Nova Araújo, A. et al. In vitro assessment of polyethylene glycol and polyvinylpyrrolidone as hydrophilic additives on bioseparation by polysulfone membranes. J Mater Sci 55, 1292–1307 (2020). https://doi.org/10.1007/s10853-019-04123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04123-1

Navigation