Skip to main content
Log in

Experimental investigation on response and failure modes of 2D and 3D woven composites under low velocity impact

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the behavior of 2D and 3D woven composites is compared under low velocity impact. Several 2D and 3D specimens were tested using a drop-weight tower, and their performance was compared using extracted data such as damage threshold load, damage initiation time, absorbed energy and maximum deflection. Besides, their damage modes and delamination areas were examined by stereomicroscope and C-scan technique, respectively. The results showed that the 3D woven composites absorbed more impact energy than 2D ones while their maximum deflection was lower. Moreover, the delamination and damage areas were much smaller in the 3D composites than the 2D ones of similar thickness. A new parameter is presented for comparing damage severity of the 2D and 3D composites. Unlike conventional parameters, the presented one shows potential for being applicable to laminated composites, regardless of their areal densities, layer numbers and weave structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Mahmood A, Wang X, Zhou C (2013) Generic stiffness model for 3D woven orthogonal hybrid composites. Aerosp Sci Technol 31:42–52. https://doi.org/10.1016/j.ast.2013.09.005

    Article  Google Scholar 

  2. Esmaeeli M, Kazemianfar B, Nami MR (2019) Simultaneous optimization of elastic constants of laminated composites using artificial bee colony algorithm. Adv Compos Hybrid Mater 2:431–443. https://doi.org/10.1007/s42114-019-00106-7

    Article  Google Scholar 

  3. Sarasini F, Tirillò J, Ferrante L et al (2014) Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos B Eng 59:204–220. https://doi.org/10.1016/j.compositesb.2013.12.006

    Article  CAS  Google Scholar 

  4. Grasso M, Xu Y, Ramji A et al (2019) Low-velocity impact behaviour of woven laminate plates with fire retardant resin. Compos B Eng 171:1–8. https://doi.org/10.1016/j.compositesb.2019.04.023

    Article  CAS  Google Scholar 

  5. Miao H, Wu Z, Ying Z, Hu X (2019) The numerical and experimental investigation on low-velocity impact response of composite panels: effect of fabric architecture. Compos Struct 227:111343. https://doi.org/10.1016/j.compstruct.2019.111343

    Article  Google Scholar 

  6. Yang C-H, Ma W-N, Ma D-W (2018) Low-velocity impact analysis of carbon nanotube reinforced composite laminates. J Mater Sci 53:637–656. https://doi.org/10.1007/s10853-017-1538-z

    Article  CAS  Google Scholar 

  7. Zhang C, Curiel-Sosa JL, Duodu EA (2017) Finite element analysis of the damage mechanism of 3D braided composites under high-velocity impact. J Mater Sci 52:4658–4674. https://doi.org/10.1007/s10853-016-0709-7

    Article  CAS  Google Scholar 

  8. Kaboglu C, Mohagheghian I, Zhou J et al (2018) High-velocity impact deformation and perforation of fibre metal laminates. J Mater Sci 53:4209–4228. https://doi.org/10.1007/s10853-017-1871-2

    Article  CAS  Google Scholar 

  9. Chogani A, Moosavi A, Rahiminejad M (2016) Numerical simulation of salt water passing mechanism through nanoporous single-layer graphene membrane. Chem Prod Process Model 11:73. https://doi.org/10.1515/cppm-2015-0068

    Article  CAS  Google Scholar 

  10. Esmaeeli M, Nami MR, Kazemianfar B (2019) Geometric analysis and constrained optimization of woven z-pinned composites for maximization of elastic properties. Compos Struct 210:553–566. https://doi.org/10.1016/j.compstruct.2018.11.070

    Article  Google Scholar 

  11. Chun H-J, Son J, Kang K-T et al (2014) Prediction of elastic properties for woven z-pinned composites. Compos B Eng 64:59–71. https://doi.org/10.1016/j.compositesb.2014.04.010

    Article  CAS  Google Scholar 

  12. Mouritz AP (2008) Tensile fatigue properties of 3D composites with through-thickness reinforcement. Compos Sci Technol 68:2503–2510. https://doi.org/10.1016/j.compscitech.2008.05.003

    Article  CAS  Google Scholar 

  13. Zhou L, Zeng J, Jiang L, Hu H (2018) Low-velocity impact properties of 3D auxetic textile composite. J Mater Sci 53:3899–3914. https://doi.org/10.1007/s10853-017-1789-8

    Article  CAS  Google Scholar 

  14. Zikray MA, Baucom JB (2003) Evolution of failure mechanism in 2D and 3D woven composites system under quasi-static perforation. J Compos Mater 37:1651. https://doi.org/10.1177/002199803035178

    Article  CAS  Google Scholar 

  15. Baucom JN, Zikry MA, Qiu Y (2004) Dynamic and quasi-static failure evolution of 3D woven cellular composite systems. J Reinf Plast Compos 23:471–481. https://doi.org/10.1177/0731684404032076

    Article  CAS  Google Scholar 

  16. Baucom JN, Zikry MA (2005) Low-velocity impact damage progression in woven E-glass composite systems. Compos A Appl Sci Manuf 36:658–664. https://doi.org/10.1016/j.compositesa.2004.07.008

    Article  CAS  Google Scholar 

  17. Baucom JN, Zikry MA, Rajendran AM (2006) Low-velocity impact damage accumulation in woven S2-glass composite systems. Compos Sci Technol 66:1229–1238. https://doi.org/10.1016/j.compscitech.2005.11.005

    Article  CAS  Google Scholar 

  18. Gerlach R, Siviour CR, Wiegand J, Petrinic N (2012) In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading. Compos Sci Technol 72:397–411. https://doi.org/10.1016/j.compscitech.2011.11.032

    Article  CAS  Google Scholar 

  19. Castaneda N, Wisner B, Cuadra J et al (2017) Investigation of the Z-binder role in progressive damage of 3D woven composites. Compos A Appl Sci Manuf 98:76–89. https://doi.org/10.1016/j.compositesa.2016.11.022

    Article  CAS  Google Scholar 

  20. Pankow M, Waas AM, Yen CF, Ghiorse S (2011) Shock loading of 3D woven composites: a validated finite element investigation. Compos Struct 93:1347–1362. https://doi.org/10.1016/j.compstruct.2010.11.001

    Article  Google Scholar 

  21. Behera BK, Dash BP (2015) Mechanical behavior of 3D woven composites. Mater Des 67:261–271. https://doi.org/10.1016/j.matdes.2014.11.020

    Article  CAS  Google Scholar 

  22. Saleh MN, El-Dessouky HM, Saeedifar M et al (2019) Compression after multiple low velocity impacts of NCF, 2D and 3D woven composites. Compos A Appl Sci Manuf 125:105576. https://doi.org/10.1016/j.compositesa.2019.105576

    Article  CAS  Google Scholar 

  23. Bandaru AK, Chavan VV, Ahmad S et al (2016) Low velocity impact response of 2D and 3D Kevlar/polypropylene composites. Int J Impact Eng 93:136–143. https://doi.org/10.1016/j.ijimpeng.2016.02.016

    Article  Google Scholar 

  24. Bandaru AK, Chavan VV, Ahmad S et al (2016) Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. Int J Impact Eng 89:1–13. https://doi.org/10.1016/j.ijimpeng.2015.10.014

    Article  Google Scholar 

  25. Bandaru AK, Patel S, Sachan Y et al (2016) Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater Des 105:323–332. https://doi.org/10.1016/j.matdes.2016.05.075

    Article  CAS  Google Scholar 

  26. Bandaru AK, Sachan Y, Ahmad S et al (2017) On the mechanical response of 2D plain woven and 3D angle-interlock fabrics. Compos B Eng 118:135–148. https://doi.org/10.1016/j.compositesb.2017.03.011

    Article  CAS  Google Scholar 

  27. Thorsson SI, Sringeri SP, Waas AM et al (2018) Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact. Compos Struct 186:335–346. https://doi.org/10.1016/j.compstruct.2017.11.084

    Article  Google Scholar 

  28. Pankow M, Waas AM, Yen CF, Ghiorse S (2012) Modeling the response, strength and degradation of 3D woven composites subjected to high rate loading. Compos Struct 94:1590–1604. https://doi.org/10.1016/j.compstruct.2011.12.010

    Article  Google Scholar 

  29. Wang J, Waas AM, Wang H (2013) Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct 96:298–311. https://doi.org/10.1016/j.compstruct.2012.09.002

    Article  Google Scholar 

  30. Thorsson SI, Waas AM, Rassaian M (2018) Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach part A: impact study. Int J Solids Struct 155:185–200. https://doi.org/10.1016/j.ijsolstr.2018.07.020

    Article  Google Scholar 

  31. Zabala H, Aretxabaleta L, Castillo G et al (2014) Impact velocity effect on the delamination of woven carbon–epoxy plates subjected to low-velocity equienergetic impact loads. Compos Sci Technol 94:48–53. https://doi.org/10.1016/j.compscitech.2014.01.016

    Article  CAS  Google Scholar 

  32. Suresh Kumar C, Arumugam V, Dhakal HN, John R (2015) Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites. Compos Struct 125:407–416. https://doi.org/10.1016/j.compstruct.2015.01.037

    Article  Google Scholar 

  33. Belingardi G, Vadori R (2003) Influence of the laminate thickness in low velocity impact behavior of composite material plate. Compos Struct 61:27–38. https://doi.org/10.1016/S0263-8223(03)00027-8

    Article  Google Scholar 

  34. Wang Y, Zhang J, Fang G et al (2018) Influence of temperature on the impact behavior of woven-ply carbon fiber reinforced thermoplastic composites. Compos Struct 185:435–445. https://doi.org/10.1016/j.compstruct.2017.11.056

    Article  Google Scholar 

  35. Mitrevski T, Marshall IH, Thomson R et al (2005) The effect of impactor shape on the impact response of composite laminates. Compos Struct 67:139–148. https://doi.org/10.1016/j.compstruct.2004.09.007

    Article  Google Scholar 

  36. Sultan MTH, Worden K, Staszewski WJ, Hodzic A (2012) Impact damage characterisation of composite laminates using a statistical approach. Compos Sci Technol 72:1108–1120. https://doi.org/10.1016/j.compscitech.2012.01.019

    Article  CAS  Google Scholar 

  37. Sevkat E, Liaw B, Delale F, Raju BB (2010) Effect of repeated impacts on the response of plain-woven hybrid composites. Compos B Eng 41:403–413. https://doi.org/10.1016/j.compositesb.2010.01.001

    Article  CAS  Google Scholar 

  38. Zhang D, Sun Y, Chen L, Pan N (2013) A comparative study on low-velocity impact response of fabric composite laminates. Mater Des 50:750–756. https://doi.org/10.1016/j.matdes.2013.03.044

    Article  CAS  Google Scholar 

  39. Shyr T-W, Pan Y-H (2003) Impact resistance and damage characteristics of composite laminates. Compos Struct 62:193–203. https://doi.org/10.1016/S0263-8223(03)00114-4

    Article  Google Scholar 

  40. Hossain ME, Hossain MK, Hosur M, Jeelani S (2014) Low-velocity impact behavior of CNF-filled glass-reinforced polyester composites. J Compos Mater 48:879–896. https://doi.org/10.1177/0021998313480194

    Article  Google Scholar 

  41. Abdallah EA, Bouvet C, Rivallant S et al (2009) Experimental analysis of damage creation and permanent indentation on highly oriented plates. Compos Sci Technol 69:1238–1245. https://doi.org/10.1016/j.compscitech.2009.02.029

    Article  CAS  Google Scholar 

  42. Matadi Boumbimba R, Coulibaly M, Khabouchi A et al (2017) Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: low velocity impact response at various temperatures. Compos Struct 160:939–951. https://doi.org/10.1016/j.compstruct.2016.10.127

    Article  Google Scholar 

  43. Mitrevski T, Marshall IH, Thomson RS, Jones R (2006) Low-velocity impacts on preloaded GFRP specimens with various impactor shapes. Compos Struct 76:209–217. https://doi.org/10.1016/j.compstruct.2006.06.033

    Article  Google Scholar 

  44. Hosur MV, Adbullah M, Jeelani S (2005) Studies on the low-velocity impact response of woven hybrid composites. Compos Struct 67:253–262. https://doi.org/10.1016/j.compstruct.2004.07.024

    Article  Google Scholar 

  45. Evci C, Gülgeç M (2012) An experimental investigation on the impact response of composite materials. Int J Impact Eng 43:40–51. https://doi.org/10.1016/j.ijimpeng.2011.11.009

    Article  Google Scholar 

  46. Brostow W, Hagg Lobland HE (2010) Brittleness of materials: implications for composites and a relation to impact strength. J Mater Sci 45:242–250. https://doi.org/10.1007/s10853-009-3926-5

    Article  CAS  Google Scholar 

  47. Minak G, Ghelli D (2008) Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates. Compos B Eng 39:962–972. https://doi.org/10.1016/j.compositesb.2008.01.001

    Article  CAS  Google Scholar 

  48. Lee SH, Waas AM (1999) Compressive response and failure of fiber reinforced unidirectional composites. Int J Fract 100:275–306. https://doi.org/10.1023/A:1018779307931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Kazemianfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The raw data required to reproduce these findings are available to download from [https://doi.org/10.17632/p95kc5tskb.2].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemianfar, B., Esmaeeli, M. & Nami, M.R. Experimental investigation on response and failure modes of 2D and 3D woven composites under low velocity impact. J Mater Sci 55, 1069–1091 (2020). https://doi.org/10.1007/s10853-019-04096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04096-1

Navigation