Skip to main content
Log in

Impact Response of 3D Orthogonal Woven Composites with Different Fiber Types

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The paper aims to study low-velocity impact behavior on the synergistic effect of intralaminar carbon/glass hybridization and three-dimensional (3D) orthogonal woven structure. A drop-testing machine is used for impact tests considering the effects of impact energy ranging from 23 J to 70 J. Nondestructive testing methods and a realistic yarn-level finite element model accounting for material damage are implemented to study structure deformation and stress evolution. Simulation results are compared with experimental measurements, which show a good correlation. The impact response of three configurations of 3D orthogonal woven composites (3DOWCs) is evaluated in terms of residual deformation, maximum displacement, maximum peak load and inelastic energy with different impact energy levels. The results show the intralaminar hybridizing carbon yarns with glass yarns with greater strain (about 22.78% more than the structure of pure carbon fibers) to failure benefits the toughness performance and energy absorption of the 3DOWCs, especially for the structure that glass fibers used as weft yarns. The stress in each layer travels along with the yarn axis due to the discontinuity between the same type of yarns. In contrast, the compressive stress along the thickness direction is transferred to the lower layer by the overlapping points, further resulting in stress along the yarn axis in the next layer. These findings are of guiding significance for the design of complex 3D fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Potluri, P., Hogg, P, Arshad M., Jetavat, D., Jamshidi, P.: Influence of fiber architecture on impact damage tolerance in 3D woven composites. Appl. Compos. Mater. 19, 799–812 (2012). https://doi.org/10.1007/s10443-012-9256-9

  2. Dau, F., Dano, M.L., Kergomard, Y.D.: Experimental investigations and variability considerations on 3D interlock textile composites used in low-velocity soft impact loading. Compos. Struct. 153, 369–379 (2016). https://doi.org/10.1016/j.compstruct.2016.06.034

    Article  Google Scholar 

  3. Hart, K.R., Chia, P.X.L., Sheridan, L.E., Wetzel, E.D., Sottos, N.R., White, S.R.: Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 101, 432–443 (2017). https://doi.org/10.1016/j.compositesa.2017.07.00

  4. Andrew, J.J., Srinivasan, S.M., Arockiarajan, A., Dhakal, H.N.: Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: a critical review. Compos. Struct. 224, 111007 (2019). https://doi.org/10.1016/j.compstruct.2019.111007

  5. Shah, S.Z.H., Karuppanan, S., Megat-Yusoff, P.S.M., Sajid, Z.: Impact resistance and damage tolerance of fiber reinforced composites: a review. Compos. Struct. 217, 100–121 (2019). https://doi.org/10.1016/j.compstruct.2019.03.021

    Article  Google Scholar 

  6. Warren, K.C., Lopez-Anido, R.A., Goering, J.: Experimental investigation of three-dimensional woven composites. Compos. Part A Appl. Sci. Manuf. 73, 242–259 (2015). https://doi.org/10.1016/j.compositesa.2015.03.011

    Article  CAS  Google Scholar 

  7. Buneaa, M., Cîrciumarua, A., Buciumeanub, M., Bîrsana, I.G., Silva, F.S.: Low-velocity impact response of fabric reinforced hybrid composites with stratified filled epoxy matrix. Compos. Sci. Technol. 169, 242–248 (2019). https://doi.org/10.1016/j.compscitech.2018.11.024

    Article  CAS  Google Scholar 

  8. Kevin, R.H., Patrick, X.L.C., Lawrence, E.S., Eric, D.W., Nancy, R.S., Scott, R.W.: Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 101, 432–443 (2017). https://doi.org/10.1016/j.compositesa.2017.07.004

    Article  CAS  Google Scholar 

  9. Robert, G., Clive, R.S., Jens, W., Nik, P.: In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fiber composites subject to impact loading. Compos. Sci. Technol. 72, 397–422 (2012). https://doi.org/10.1016/j.compscitech.2011.11.032

    Article  CAS  Google Scholar 

  10. Tan, H.C., Liu, L.L., Guan, Y.P., Chen, W.P., Zhao, Z.H.: Investigation of three-dimensional braided composites subject to steel projectile impact: Experimental study and numerical simulation. Thin. Wall. Struct. 140, 144–156 (2019). https://doi.org/10.1016/j.tws.2019.03.030

    Article  Google Scholar 

  11. Ahmed, S., Zheng, X.T., Yan, L.L., Zhang, C., Wang, X.: Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites. Compos. Sci. Technol. 199, 108326 (2020). https://doi.org/10.1016/j.compscitech.2020.108326

  12. Aymerich, F., Meili, S.: Ultrasonic evaluation of matrix damage in impacted composite laminates. Compos. B. Eng. 31, 1–6 (2000). https://doi.org/10.1016/S1359-8368(99)00067-0

    Article  Google Scholar 

  13. Lu, T.Y., Chen, X.H., Wang, H., Zhang, L., Zhou, Y.H.: Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope. Polym. Test. 91, 106730 (2020). https://doi.org/10.1016/j.polymertesting.2020.106730

  14. Garcea, S.C., Wang, Y., Withers, P.J.: X-ray computed tomography of polymer composites. Compos. Sci. Technol. 156, 305–319 (2018). https://doi.org/10.1016/j.compscitech.2017.10.023

    Article  CAS  Google Scholar 

  15. Claus, J., Santos, R.A.M., Larissa, G., Yentl, S.: Effect of matrix and fiber type on the impact resistance of woven composites. Compos. B. Eng. 183, 107736 (2020). https://doi.org/10.1016/j.compositesb.2019.107736

  16. Leonard, F., Stein, J., Soutis, C., Withers, P.J.: The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms. Compos. Sci. Technol. 152, 139–148 (2017). https://doi.org/10.1016/j.compscitech.2017.08.034

    Article  CAS  Google Scholar 

  17. Khashaba, U.A., Othman, R.: Low-velocity impact of woven CFRE composites under different temperature levels. Int. J. Impact. Eng. 108, 191–204 (2017). https://doi.org/10.1016/j.ijimpeng.2017.04.023

    Article  Google Scholar 

  18. Kazemianfar, B., Esmaeeli, M., Nami, M.R.: Response of 3D woven composites under low-velocity impact with different impactor geometries. Aerosp. Sci. Technol. 102, 105849 (2020). https://doi.org/10.1016/j.ast.2020.105849

  19. Kazemianfar, B., Nami, M.R.: Influence of oblique low-velocity impact on damage behavior of2D and 3D woven composites: Experimental and numerical methods. Thin. Wall. Struct. 167, 108253 (2021). https://doi.org/10.1016/j.tws.2021.108253

  20. Mohamed, N.S., Hassan, M.E.D., Milad, S., Sofia, T.D.F., Richard, J.S., Dimitrios, Z.: Compression after multiple low-velocity impacts of NCF, 2D and 3D woven composites. Compos. Part A Appl. Sci. Manuf. 125, 105576 (2019). https://doi.org/10.1016/j.compositesa.2019.105576

  21. Liu, H.B., Liu, J., Kaboglu, C.H., Zhou, J., Kong, X.S., Blackman, B.R.K., Kinlocha, A.J., Dear, J.P.: The behavior of fiber-reinforced composites subject to a soft impact-loading: An experimental and numerical study. Eng. Fail. Anal. 111, 104448 (2020). https://doi.org/10.1016/j.engfailanal.2020.104448

  22. Raimondo, L., Iannucci, L., Robinson, P., Curtis, P.T.: A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage. Compos. Sci. Technol. 72, 624–632 (2012). https://doi.org/10.1016/j.compscitech.2012.01.007

    Article  CAS  Google Scholar 

  23. Wu, Z.Y., Zhang, L.C., Ying, Z.P., Ke, J., Hu, X.D.: Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Compos. B. Eng. 196, 108098 (2020). https://doi.org/10.1016/j.compositesb.2020.108098

  24. Shah, S.Z.H., Megat-Yusoff, P.S.M., Karuppanan, S., Choudhry, R.S., Sajid, Z.: Multiscale damage modelling of 3D woven composites under static and impact loads. Compos. Part A Appl. Sci. Manuf. 151, 106659 (2021). https://doi.org/10.1016/j.compositesa.2021.106659

  25. Cao, W.J., Zhang, J.J., Sun, B.Z., Gu, B.H.: X-ray tomography and numerical study on low-velocity impact damages of three-dimensional angle-interlock woven composites. Compos. Struct. 230, 111525 (2019). https://doi.org/10.1016/j.compstruct.2019.111525

  26. Miao, H.R., Wu, Z.Y., Ying, Z.P., Hu, X.D.: The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture. Compos. Struct. 227, 111343 (2019). https://doi.org/10.1016/j.compstruct.2019.111343

  27. Zhang, J.J., Zhang, W., Huang, S.W., Gu, B.H.: An experimental-numerical study on 3D angle-interlock woven composite under transverse impact at subzero temperatures. Compos. Struct. 268, 113936 (2021). https://doi.org/10.1016/j.compstruct.2021.113936

  28. Muñoz, R., Seltzer, R., Federico, S., González, C., Llorca, J.: Influence of hybridisation on energy absorption of 3D woven composites under low-velocity impact loading. Modelling and experimental validation. Int. J. Impact. Eng. 165, 104229 (2022). https://doi.org/10.1016/j.ijimpeng.2022.104229

  29. Suresh, K.C., Fotouhi, M., Saeedifar, M., Arumugam, V.: Acoustic emission based investigation on the effect of temperature and hybridization on drop weight impact and post-impact residual strength of hemp and basalt fibers reinforced polymer composite laminates. Compos. B. Eng. 173, 106962 (2019). https://doi.org/10.1016/j.compositesb.2019.106962

  30. Sarasini, F., Tirillo, J., Valente, M., Valente, T., Cioffi, S., Iannace, S., Sorrentino, L.: Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 47, 109–123 (2013). https://doi.org/10.1016/j.compositesa.2012.11.021

    Article  CAS  Google Scholar 

  31. Papa, I., Boccarusso, L., Langella, A., Lopresto, V.: Carbon/glass hybrid composite laminates in vinylester resin: bending and low-velocity impact tests. Compos. Struct. 232, 111571 (2020). https://doi.org/10.1016/j.compstruct.2019.111571

  32. Muñoz, R., Martínez-Hergueta, F., Gálvez, F., González, C., LLorca, J.: Ballistic performance of hybrid 3D woven composites: Experiments and simulations. Compos. Struct. 127, 141–151 (2015). https://doi.org/10.1016/j.compstruct.2015.03.021

  33. Bandaru, A.K., Ahmad, S., Bhatnagar, N.: Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos. Part A Appl. Sci. Manuf. 97, 151–165 (2017). https://doi.org/10.1016/j.compositesa.2016.12.007

    Article  CAS  Google Scholar 

  34. Sapozhnikov, S.B., Kudryavtsev, O.A., Zhikharev, M.V.: Fragment ballistic performance of homogenous and hybrid thermoplastic composites. Int. J. Impact. Eng. 87, 8–16 (2015). https://doi.org/10.1016/j.ijimpeng.2015.03.004

    Article  Google Scholar 

  35. Damghani, M., Ersoy, N., Piorkowski, M., Murphy, A.: Experimental evaluation of residual tensile strength of hybrid composite aerospace materials after low-velocity impact. Compos. B. Eng. 179, 107537 (2019). https://doi.org/10.1016/j.ijimpeng.2022.104229

  36. Swolfs, Y., Gorbatikh, L., Verpoest, I.: Fiber hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 67, 181–200 (2014). https://doi.org/10.1016/j.compositesa.2014.08.027

    Article  CAS  Google Scholar 

  37. Shah, S.Z.H., Megat-Yusoff, P.S.M., Karuppanan, S., Choudhry, R.S., Ahmad, F., Sajid, Z., Gerard, P., Sharp, K.: Performance comparison of resin-infused thermoplastic and thermoset 3D fabric composites under impact loading. Int. J. Mech. Sci 189, 105984 (2021). https://doi.org/10.1016/j.ijmecsci.2020.105984

  38. Saleha, M.N., El-Dessouky, HM., Saeedifara M, De Freitasa, S.T., Scaifeb, R.J., Zarouchas, D.: Compression after multiple low-velocity impacts of NCF, 2D and 3D woven composites. Compos. Part A Appl. Sci. Manuf. 125, 105576 (2019). https://doi.org/10.1016/j.compositesa.2019.105576

  39. He, C.W., Ge, J.R., Zhang, B.B., Gao, J.Y., Zhong, S.Y., Liu, W.K., Fang, D.N.: A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature. Compos. Sci. Technol. 196, 108230 (2020). https://doi.org/10.1016/j.compscitech.2020.108230

  40. Chang, F.K., Chang, K.Y.: A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21, 834–855 (1987). https://doi.org/10.1177/002199838702100904

    Article  CAS  Google Scholar 

  41. Feraboli, P., Wade, B., Deleo, F., Rassaian, M., Higgins, M., Byar, A.: LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen. Compos. Part A Appl. Sci. Manuf. 42, 1809–1825 (2011). https://doi.org/10.1016/j.compositesa.2011.08.004

    Article  CAS  Google Scholar 

  42. Cowper, G.R., Symonds, P.S: Strain Hardening and Strain-rate Effects in the Impact Loading of Centilevered Beams. Brown Univ Providence Ri (1957). https://doi.org/10.21236/AD0144762

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant numbers 52175147 and 51875463), Aviation Science Foundation of China (Grant number 20200044053002) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-046).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experiment, simulation and data analysis were performed by Yan Li, Fusheng Wang, Xuguang Shi, Linjing Guo, and Chenguang Huang. The first draft of the manuscript was written by Yan Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fusheng Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, F., Shi, X. et al. Impact Response of 3D Orthogonal Woven Composites with Different Fiber Types. Appl Compos Mater 30, 1819–1840 (2023). https://doi.org/10.1007/s10443-023-10150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10150-8

Keywords

Navigation