Skip to main content
Log in

Structure Effect on Damage Evolution of 3-D Angle-interlock Woven Composites Under Low-velocity Impact By Coupled DIC Analysis and Numerical Study

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Impact damage distribution is the key to designing composite structures with high-impact damage tolerances. Here we report the impact damage initiation, evolution and distribution in three-dimensional (3-D) woven composites from inner and surface deformation. The ultimate peak force of 48 kN was predicted with a spring-mass-dashpot model. A novel damage-tracking algorithm was developed to observe the evolution of surface damage and quantify the damage characteristics. We found that the woven structure has a great effect on the damage propagation and the distribution of strain and stress. The high deformation resistance, the large stress value and the wide stress distribution on the weft yarn are attributed to its high strength and straight arrangement. The crimp of warp yarn limits the stress distribution which is easy to cause stress and damage concentration. With the warp yarn breakage, more interfacial damage spreads on the weft yarn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statements

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H.: Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A Appl. Sci. Manuf. 30(12), 1445–1461 (1999). https://doi.org/10.1016/S1359-835X(99)00034-2

    Article  Google Scholar 

  2. Katunin, A., Wronkowicz-Katunin, A., Danek, W., Wyleżoł, M.: Modeling of a realistic barely visible impact damage in composite structures based on NDT techniques and numerical simulations. Compos. Struct. 267, 1–16 (2021)

    Article  Google Scholar 

  3. Sun, X.C., Hallett, S.R.: Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos. Part A Appl. Sci. Manuf. 104, 41–59 (2018)

    Article  CAS  Google Scholar 

  4. Paipetis A, Katerelos D. Post-Impact-Fatigue behaviour of composite laminates: Current and novel technologies for enhanced damage tolerance. Compos. Laminates: Properties, Performance and App. 1–82 (2010). https://www.researchgate.net/publication/287301766

  5. Angelidis, N., Irving, P.E.: Detection of impact damage in CFRP laminates by means of electrical potential techniques. Compos. Sci. Technol. 67(3–4), 594–604 (2007)

    Article  CAS  Google Scholar 

  6. Meola, C., Carlomagno, G.M.: Impact damage in GFRP: New insights with infrared thermography. Compos. Part A Appl. Sci. Manuf. 41(12), 1839–1847 (2010)

    Article  Google Scholar 

  7. Léonard, F., Stein, J., Soutis, C., Withers, P.J.: The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms. Compos. Sci. Technol. 152, 139–148 (2017). https://doi.org/10.1016/j.compscitech.2017.08.034

    Article  CAS  Google Scholar 

  8. Holmes, J., Sommacal, S., Stachurski, Z., Das, R., Compston, P.: Digital image and volume correlation with X-ray micro-computed tomography for deformation and damage characterisation of woven fibre-reinforced composites. Compos. Struct. 279, 1–12 (2022)

    Article  Google Scholar 

  9. Flores, M., Mollenhauer, D., Runatunga, V., Beberniss, T., Rapking, D., Pankow, M.: High-speed 3D digital image correlation of low-velocity impacts on composite plates. Compos. B Eng. 131, 153–164 (2017). https://doi.org/10.1016/j.compositesb.2017.07.078

    Article  CAS  Google Scholar 

  10. Ramakrishnan, K.R., Corn, S., Le Moigne, N., Ienny, P., Slangen, P.: Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis. Compos. Part A Appl. Sci. Manuf. 140, 1–14 (2021). https://doi.org/10.1016/j.compositesa.2020.106137

    Article  CAS  Google Scholar 

  11. El-Dessouky, H.M., Saleh, M.N., Wang, Y., Alotaibi, M.S.: Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites. Appl. Sci. 11(5), 1–15 (2021)

    Article  Google Scholar 

  12. Caminero, M.A., Lopez-Pedrosa, M., Pinna, C., Soutis, C.: Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Compos. B Eng. 53, 76–91 (2013). https://doi.org/10.1016/j.compositesb.2013.04.050

    Article  CAS  Google Scholar 

  13. Delavari, K., Safavi, A.: The effect of stacking sequence on high-velocity impact resistance of hybrid woven reinforced composites: experimental study and numerical simulation. Fibers Polym. 23, 184–195 (2022). https://doi.org/10.1007/s12221-021-0257-x

    Article  CAS  Google Scholar 

  14. Delavari, K., Dabiryan, H.: Mathematical and numerical simulation of geometry and mechanical behavior of sandwich composites reinforced with 1 × 1-Rib-Gaiting weft-knitted spacer fabric; compressional behavior. Compos. Struct. 268, (2021). https://doi.org/10.1016/j.compstruct.2021.113952

  15. Delavari, K., Dabiryan, H.: Effect of Z-fiber orientation on the bending behavior of sandwich-structured composite: Numerical and experimental study. Compos. Struct. 256, (2021)

  16. Tuo, H.L., Lu, Z.X., Ma, X.P., Zhang, C., Chen, S.W.: An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates. Compos. B Eng. 167, 329–341 (2019). https://doi.org/10.1016/j.compstruct.2021.113952

    Article  CAS  Google Scholar 

  17. Rahimizadeh, A., Yazdani Sarvestani, H., Li, L., Barroeta Robles, J., Backman, D., Lessard, L., et al.: Engineering toughening mechanisms in architectured ceramic-based bioinspired materials. Mater. Des. 198, 1–12 (2021). https://doi.org/10.1016/j.matdes.2020.109375

    Article  CAS  Google Scholar 

  18. Kashfuddoja, M., Ramji, M.: Whole-field strain analysis and damage assessment of adhesively bonded patch repair of CFRP laminates using 3D-DIC and FEA. Compos. B Eng. 53, 46–61 (2013). https://doi.org/10.1016/j.compositesb.2013.04.030

    Article  CAS  Google Scholar 

  19. Mohagheghian, I., Wang, Y., Zhou, J., Yu, L., Guo, X., Yan, Y., et al.: Deformation and damage mechanisms of laminated glass windows subjected to high velocity soft impact. Int. J. Solids Struct. 109, 46–62 (2017). https://doi.org/10.1016/j.ijsolstr.2017.01.006

    Article  Google Scholar 

  20. Bogenfeld, R., Kreikemeier, J., Wille, T.: Review and benchmark study on the analysis of low-velocity impact on composite laminates. Eng. Fail Anal. 86, 72–99 (2018). https://doi.org/10.1016/j.compstruct.2021.113952

    Article  CAS  Google Scholar 

  21. Israr, H.A., Rivallant, S., Bouvet, C., Barrau, J.J.: Finite Element simulation of 0°/90° CFRP laminated plates subjected to crushing using a free-face-crushing concept. Compos. Part A Appl. Sci. Manuf. 62, 16–25 (2014). https://doi.org/10.1016/j.compstruct.2021.113952

    Article  CAS  Google Scholar 

  22. Chen, W.G., Deng, H., Dong, S.L., Zhu, Z.Y.: Numerical modelling of lockbolted lap connections for aluminium alloy plates. Thin Wall Struct. 130, 1–11 (2018). https://doi.org/10.1016/j.compstruct.2021.113952

    Article  CAS  Google Scholar 

  23. Boukar, A., Corn, S., Slangen, P.R.L., Ienny, P.: Finite element modelling of low velocity impact test applied to biaxial glass fiber reinforced laminate composites. Int. J. Impact Eng 165, 1–17 (2022). https://doi.org/10.1016/j.compstruct.2021.113952

    Article  CAS  Google Scholar 

  24. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996). https://doi.org/10.1016/j.compstruct.2021.113952

    Article  CAS  Google Scholar 

  25. Zhou, H.L., Pan, Z.X., Gideon, R.K., Gu, B.H., Sun, B.Z.: Experimental and numerical investigation of the transverse impact damage and deformation of 3-D circular braided composite tubes from meso-structure approach. Compos. B Eng. 86, 243–253 (2016). https://doi.org/10.1016/j.compositesb.2015.10.019

    Article  CAS  Google Scholar 

  26. Li, Y., Sun, B., Gu, B.: Impact shear damage characterizations of 3D braided composite with X-ray micro-computed tomography and numerical methodologies. Compos. Struct. 176, 43–54 (2017). https://doi.org/10.1016/j.compstruct.2017.04.067

    Article  Google Scholar 

  27. Liu, S.K., Zhang, J.J., Shi, B.H., Wang, L., Gu, B.H., Sun, B.Z.: Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression. Compos. B Eng. 161, 677–690 (2019). https://doi.org/10.1016/j.compositesb.2018.11.140

    Article  CAS  Google Scholar 

  28. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965). https://doi.org/10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  29. Wan, Y.M., Sun, B.Z., Gu, B.H.: Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions. Mech. Mater. 94, 1–25 (2016). https://doi.org/10.1016/j.compositesb.2018.11.140

    Article  CAS  Google Scholar 

  30. Huang, H., Waas, A.M.: Compressive response of Z-pinned woven glass fiber textile composite laminates: Modeling and computations. Compos. Sci. Technol. 69, 2338–2344 (2009). https://doi.org/10.1016/j.compscitech.2009.01.008

    Article  CAS  Google Scholar 

  31. Zhang, J.J., Hu, M.Q., Liu, S.K., Wang, L., Gu, B.H., Sun, B.Z.: High strain rate compressive behaviors and adiabatic shear band localization of 3-D carbon/epoxy angle-interlock woven composites at different loading directions. Compos. Struct. 211, 502–521 (2019). https://doi.org/10.1016/j.compstruct.2018.12.037

    Article  Google Scholar 

  32. Dai, S., Cunningham, P.R.: Multi-scale damage modelling of 3D woven composites un- der uni-axial tension. Compos. Struct. 142, 298–312 (2016). https://doi.org/10.1016/j.compstruct.2016.01.103

    Article  Google Scholar 

  33. Phadnis, V.A., Makhdum, F., Roy, A., Silberschmidt, V.V.: Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation. Compos. Part A Appl. Sci. Manuf. 47, 41–51 (2013). https://doi.org/10.1016/j.compositesa.2012.11.020

    Article  CAS  Google Scholar 

  34. Lu, X., Ridha, M., Chen, B.Y., Tan, V.B.C., Tay, T.E.: On cohesive element parameters and delamination modelling. Eng. Fract. Mech. 206, 278–296 (2019). https://doi.org/10.1016/j.engfracmech.2018.12.009

    Article  Google Scholar 

  35. Kravchenko, S.G., Volle, C., Kravchenko, O.G.: An experimental investigation on low-velocity impact response and compression after impact of a stochastic, discontinuous prepreg tape composite. Compos. Part A Appl. Sci. Manuf. 149, 1–19 (2021). https://doi.org/10.1016/j.compositesa.2021.106524

    Article  CAS  Google Scholar 

  36. Feraboli, P.: Modified SDOF Models for Improved Representation of the Impact Response of Composite Plates. J. Compos. Mater. 40(24), 2235–2255 (2006). https://doi.org/10.1177/0021998306062318

    Article  CAS  Google Scholar 

  37. Feraboli, P., Kedward, K.T.: Enhanced Evaluation of the Low-Velocity Impact Response of Composite Plates. AIAA J. 42(10), 2143–2152 (2004). https://doi.org/10.2514/1.4534

    Article  Google Scholar 

  38. Ke, Y.N., Huang, S.W., Guo, J.H., Han, C.F., Sun, B.Z., Gu, B.H.: Effects of thermo-oxidative aging on 3-D deformation field and mechanical behaviors of 3-D angle-interlock woven composites. Compos. Struct. 281, (2022). https://doi.org/10.1016/j.compstruct.2021.115116

Download references

Acknowledgements

The authors acknowledge the financial supports from the National Science Foundation of China (Grant Number 51875099), the Fundamental Research Funds for Graduate Student Innovation Fund of Donghua University (Grant Number CUSF-DH-D-2020013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohong Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Wu, Y. & Gu, B. Structure Effect on Damage Evolution of 3-D Angle-interlock Woven Composites Under Low-velocity Impact By Coupled DIC Analysis and Numerical Study. Appl Compos Mater 30, 207–229 (2023). https://doi.org/10.1007/s10443-022-10080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10080-x

Keywords

Navigation