Skip to main content
Log in

Probing structural variations of graphene oxide and reduced graphene oxide using methylene blue adsorption method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, graphene oxide (GO) and reduced graphene oxide (rGO) have drawn significant attention in the development of gas sensors and nanocomposites. However, random distribution of oxygen functionalities in GO and rGO limits the use of these materials in the above application. In this study, methylene blue (MB) adsorption onto GO, synthesized under different oxidative conditions, and onto corresponding rGO was looked into in detail as both have high affinity towards MB. Our results show the amounts of MB adsorbed onto all GOs are the same irrespective of the time of oxidation. However, significant changes were observed in the amount of MB adsorbed on the corresponding rGOs that have been thermally reduced. Further, the FT-IR spectroscopic data show a blue shift for C=C stretching vibrations of MB adsorbed onto GO, whereas a red shift is observed for the bands assigned to stretching vibrations of C–N and CH3 bending upon adsorption on rGO. The above observations suggest complex structural geometry of GO and rGO, especially with respect to the spatial distribution of oxygen functionalities and their propagation during synthesis that influence MB adsorption, and its orientation. Thus, the information provided will be important in controllable synthesis of both GO and rGO with large surface area for the above applications as well as in applications such as water purification and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen DRR (2008) Synthesis and solid-state NMR structural characterization of C-labeled graphite oxide. Science 80-(321):1815–1818. https://doi.org/10.1126/science.1162369

    Article  CAS  Google Scholar 

  2. Li Z, Zhang W, Luo Y et al (2009) How graphene is cut upon oxidation? J Am Chem Soc 131:6320–6321. https://doi.org/10.1021/ja8094729

    Article  CAS  Google Scholar 

  3. Contreras Ortiz SN, Cabanzo R, Mejía-Ospino E (2019) Crude oil/water emulsion separation using graphene oxide and amine-modified graphene oxide particles. Fuel 240:162–168. https://doi.org/10.1016/j.fuel.2018.11.151

    Article  CAS  Google Scholar 

  4. Kumar HV, Huang KYS, Ward SP, Adamson DH (2017) Altering and investigating the surfactant properties of graphene oxide. J Colloid Interface Sci 493:365–370. https://doi.org/10.1016/j.jcis.2017.01.043

    Article  CAS  Google Scholar 

  5. Stankovich S, Piner RD, Chen X et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Mater Chem 16:155–158. https://doi.org/10.1039/b512799h

    Article  CAS  Google Scholar 

  6. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  7. Mcallister MJ, Li J, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  8. Schniepp HC, Li JL, McAllister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539. https://doi.org/10.1021/jp060936f

    Article  CAS  Google Scholar 

  9. An SJ, Zhu Y, Lee SH et al (2010) Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett 1:1259–1263. https://doi.org/10.1021/jz100080c

    Article  CAS  Google Scholar 

  10. Gómez-Navarro C, Weitz RT, Bittner AM et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503. https://doi.org/10.1021/nl072090c

    Article  CAS  Google Scholar 

  11. Xiong R, Kim HS, Zhang L et al (2018) Hairy graphenes: wrapping nanocellulose nets around graphene oxide sheets. Angew Chemie 57:8508–8513. https://doi.org/10.1002/anie.201803076

    Article  CAS  Google Scholar 

  12. Kim HS, Oweida TJ, Yingling YG (2018) Interfacial stability of graphene-based surfaces in water and organic solvents. J Mater Sci 53:5766–5776. https://doi.org/10.1007/s10853-017-1893-9

    Article  CAS  Google Scholar 

  13. Nakajima T, Mabuchi A, Hagiwara R (1988) A new structure model of graphite oxide. Carbon N Y 26:357–361

    Article  CAS  Google Scholar 

  14. Chen J, Zhang Y, Zhang M et al (2016) Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem Sci 7:1874–1881. https://doi.org/10.1039/C5SC03828F

    Article  CAS  Google Scholar 

  15. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723. https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  16. Sun H, Yang Y, Huang Q (2011) Preparation and structural variation of graphite oxide and graphene oxide. Integr Ferroelectr 128:163–170. https://doi.org/10.1080/10584587.2011.576628

    Article  CAS  Google Scholar 

  17. Sun P, Wang Y, Liu H et al (2014) Structure evolution of graphene oxide during thermally driven phase transformation: is the oxygen content really preserved? PLoS ONE 9:e111908. https://doi.org/10.1371/journal.pone.0111908

    Article  CAS  Google Scholar 

  18. Bagri A, Mattevi C, Acik M et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587. https://doi.org/10.1038/nchem.686

    Article  CAS  Google Scholar 

  19. Perera D, Abeywickrama A, Zen F et al (2018) Evolution of oxygen functionalities in graphene oxide and its impact on structure and exfoliation: an oxidation time based study. Mater Chem Phys 220:417–425. https://doi.org/10.1016/j.matchemphys.2018.08.072

    Article  CAS  Google Scholar 

  20. Liu X, Pan L, Lv T et al (2011) Microwave-assisted synthesis of TiO 2-reduced graphene oxide composites for the photocatalytic reduction of Cr(vi). RSC Adv 1:1245–1249. https://doi.org/10.1039/c1ra00298h

    Article  CAS  Google Scholar 

  21. Zhao W, Chen Y, Zhang Y et al (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem Eng J 193–194:203–210. https://doi.org/10.1016/j.cej.2012.04.047

    Article  CAS  Google Scholar 

  22. Song S, Ma Y, Shen H et al (2015) Removal and recycling of ppm levels of methylene blue from an aqueous solution with graphene oxide. RSC Adv 5:27922–27932. https://doi.org/10.1039/c4ra16982d

    Article  CAS  Google Scholar 

  23. Sharma P, Das MR (2013) Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data 58:151–158. https://doi.org/10.1021/je301020n

    Article  CAS  Google Scholar 

  24. Ramesha GK, Vijaya Kumara A, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277. https://doi.org/10.1016/j.jcis.2011.05.050

    Article  CAS  Google Scholar 

  25. Yang ST, Chen S, Chang Y et al (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359:24–29. https://doi.org/10.1016/j.jcis.2011.02.064

    Article  CAS  Google Scholar 

  26. Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56:138–141. https://doi.org/10.1021/je101049g

    Article  CAS  Google Scholar 

  27. Montes-Navajas P, Asenjo NG, Santamaría R et al (2013) Surface area measurement of graphene oxide in aqueous solutions. Langmuir 29:13443–13448. https://doi.org/10.1021/la4029904

    Article  CAS  Google Scholar 

  28. Marcano DCD, Kosynkin DDV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  29. Kumarasinghe AR, Samaranayake L, Bondino F et al (2013) Self-assembled multilayer graphene oxide membrane and carbon nanotubes synthesized using a rare form of natural graphite. J Phys Chem C 117:9507–9519. https://doi.org/10.1021/jp402428j

    Article  CAS  Google Scholar 

  30. Jeong H-K, Lee YP, Jin MH et al (2009) Thermal stability of graphite oxide. Chem Phys Lett 470:255–258. https://doi.org/10.1016/j.cplett.2009.01.050

    Article  CAS  Google Scholar 

  31. Vu THT, Tran TTT, Le HNT et al (2015) A new green approach for the reduction of graphene oxide nanosheets using caffeine. Bull Mater Sci 38:667–671. https://doi.org/10.1007/s12034-015-0896-x

    Article  CAS  Google Scholar 

  32. Shao Y, Wang J, Engelhard M et al (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748. https://doi.org/10.1039/B917975E

    Article  CAS  Google Scholar 

  33. Eigler S, Dimiev AM (2016) Characterization techniques. In: Graphene oxide: fundamentals and applications. Wiley, UK, pp 85–120

    Chapter  Google Scholar 

  34. Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:19761–19781. https://doi.org/10.1021/jp2052618

    Article  CAS  Google Scholar 

  35. Zhang C, Dabbs DM, Liu L-M et al (2015) Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J Phys Chem C 119:18167–18176. https://doi.org/10.1021/acs.jpcc.5b02727

    Article  CAS  Google Scholar 

  36. Venugopal G, Krishnamoorthy K, Mohan R, Kim S-J (2012) An investigation of the electrical transport properties of graphene-oxide thin films. Mater Chem Phys 132:29–33. https://doi.org/10.1016/j.matchemphys.2011.10.040

    Article  CAS  Google Scholar 

  37. Peng W, Li H, Liu Y, Song S (2016) Adsorption of methylene blue on graphene oxide prepared from amorphous graphite: effects of pH and foreign ions. J Mol Liq 221:82–87. https://doi.org/10.1016/j.molliq.2016.05.074

    Article  CAS  Google Scholar 

  38. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  39. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high resolution in situ X-ray based spectroscopies. J Phys Chem 115:17009–17019. https://doi.org/10.1021/jp203741y

    Article  CAS  Google Scholar 

  40. Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Society 130:10697–10701. https://doi.org/10.1021/ja8021686

    Article  CAS  Google Scholar 

  41. Ovchinnikov O, Chernykh S, Smirnov MS et al (2007) Analysis of interaction between the organic dye methylene blue and the surface of AgCl (I) microcrystals. J Appl Spectrosc 74:731–737

    Article  Google Scholar 

  42. Sharma P, Hussain N, Borah DJ, Das MR (2013) Kinetics and Adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet–water interface: a comparative study. J Chem Eng Data 58:3477–3488

    Article  CAS  Google Scholar 

  43. Imamura K, Ikeda E, Nagayasu T et al (2002) Adsorption behavior of methylene blue and its congeners on a stainless steel surface. J Colloid Interface Sci 245:50–57. https://doi.org/10.1006/jcis.2001.7967

    Article  CAS  Google Scholar 

  44. Zhao Z, Yuan J, Fu M et al (2014) Removal of methylene blue from aqueous solution by using oil shale ash. Oil Shale 31:161. https://doi.org/10.3176/oil.2014.2.06

    Article  CAS  Google Scholar 

  45. Minitha CR, Lalitha M, Jeyachandran YL et al (2017) Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and ππ interactions. Mater Chem Phys 194:243–252. https://doi.org/10.1016/j.matchemphys.2017.03.048

    Article  CAS  Google Scholar 

  46. Perera VV, Fernando NL, Nissanka B, Jayasundara DR (2019) In situ real time monitoring of hygroscopic properties of graphene oxide and reduced graphene oxide. Adsorption. https://doi.org/10.1007/s10450-019-00131-4

    Article  Google Scholar 

  47. Zhang W, Zhou C, Zhou W et al (2011) Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull Environ Contam Toxicol 87:86–90. https://doi.org/10.1007/s00128-011-0304-1

    Article  CAS  Google Scholar 

  48. Chen L, Yang J, Zeng X et al (2013) Adsorption of methylene blue in water by reduced graphene oxide: effect of functional groups. Mater Express 3:281–290. https://doi.org/10.1166/mex.2013.1130

    Article  CAS  Google Scholar 

  49. Kumarasinghe AR, George S, Wijesena RN et al (2014) Graphene-based membranes fabricated using high purity natural vein graphite (NVG). Int J Sci Eng Technol 3:1375–1379

    Google Scholar 

  50. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842. https://doi.org/10.1021/jp909284g

    Article  CAS  Google Scholar 

  51. Lian P, Zhu X, Liang S et al (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914. https://doi.org/10.1016/j.electacta.2010.02.025

    Article  CAS  Google Scholar 

  52. Erickson K, Erni R, Lee Z et al (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472. https://doi.org/10.1002/adma.201000732

    Article  CAS  Google Scholar 

  53. Shao G, Lu Y, Wu F et al (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409. https://doi.org/10.1007/s10853-012-6294-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Colombo, Sri Lanka, under the grant AP/3/2/2016/CG/29. The Techno Solutions (Pvt) Ltd, Instrument Center of the University of Sri Jayewardenepura, and Department of Chemistry, University of Colombo, are gratefully acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilushan R. Jayasundara.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2019_4087_MOESM1_ESM.docx

UV–Visible spectrum of MB, Comparative XRD spectra of GO and rGO, FT-IR spectra of GOs with different oxidizing times and rGOs reduced at 250 °C, Example calculation for MB adsorption on GO-1, FT-IR spectra of MB adsorbed GOs and FT-IR spectra of MB adsorbed rGOs, TGA spectra of GO-12 (DOCX 986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissanka, B., Kottegoda, N. & Jayasundara, D.R. Probing structural variations of graphene oxide and reduced graphene oxide using methylene blue adsorption method. J Mater Sci 55, 1996–2005 (2020). https://doi.org/10.1007/s10853-019-04087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04087-2

Navigation