Advertisement

Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors

  • He Chen
  • Lanyong Yu
  • Zifeng Lin
  • Qizhen Zhu
  • Peng Zhang
  • Ning Qiao
  • Bin XuEmail author
Energy materials
  • 57 Downloads

Abstract

MXenes are 2D transition metal carbides or nitrides with high electrical conductivity that have attracted great attention as promising electrode materials that supersede carbon-based material designed for supercapacitors. However, the aggregation and self-restacking of MXene 2D nanosheets limit their high-rate performance. In this work, flexible and conductive Ti3C2Tx MXene/carbon nanotubes (CNTs) composite film was prepared through a simple vacuum filtration of the Ti3C2Tx MXene and CNTs suspension mixture. The CNTs integrated MXene nanosheets can effectively prevent the restacking while creating fast ion transport channels for enhanced capacitance. The designed films exhibit excellent performance as supercapacitor electrodes with high capacitance of 300 F g−1 at 1 A g−1 with superior rate performance of 199 F g−1 even at 500 A g−1, together with excellent cyclic stability of 92% capacitance retention after 10000 cycles at 20 A g−1. The excellent workability demonstrates potential application of the system for flexible, portable and highly integrated supercapacitors.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, 51572011 and 51802012) and the National Key Research and Development Program of China (2017YFB0102204).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10853_2019_4003_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 46 kb)

References

  1. 1.
    Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098.  https://doi.org/10.1038/natrevmats.2016.98 CrossRefGoogle Scholar
  2. 2.
    Li R, Zhang L, Shi L, Wang P (2017) MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11:3752–3759CrossRefGoogle Scholar
  3. 3.
    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005CrossRefGoogle Scholar
  4. 4.
    Liu H, Zhang X, Zhu Y, Cao B, Zhu Q, Zhang P, Xu B, Wu F, Chen R (2019) Electrostatic self-assembly of 0D–2D SnO2 quantum dot/Ti3C2Tx MXene hybrids as anode for lithium ion batteries. Nano Micro Lett 11:65CrossRefGoogle Scholar
  5. 5.
    Luo J, Tao X, Zhang J, Xia Y, Zhang W (2016) Se4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499CrossRefGoogle Scholar
  6. 6.
    Liu Y, Zhang P, Sun N, Anasori B, Zhu Q, Liu H, Gogotsi Y, Xu B (2018) Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 30:1707334.  https://doi.org/10.1002/adma.201707334 CrossRefGoogle Scholar
  7. 7.
    Xiong D, Li X, Bai Z, Lu S (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14:1703419.  https://doi.org/10.1002/smll.201703419 CrossRefGoogle Scholar
  8. 8.
    Zhao Q, Zhu Q, Miao J, Zhang P, Xu B (2019) 2D MXene nanosheets enable small-sulfur electrode to be flexible for lithium-sulfur batteries. Nanoscale 11:8442–8448CrossRefGoogle Scholar
  9. 9.
    Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zhang Z, Zhou Z (2018) MXene-based materials for electrochemical energy storage. J Energy Chem 27:73–85CrossRefGoogle Scholar
  11. 11.
    Yu L, Hu L, Anasori B, Liu Y, Zhu Q, Zhang P, Gogotsi Y, Xu B (2018) MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett 3:1597–1603CrossRefGoogle Scholar
  12. 12.
    Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A (2015) Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun 6:6544.  https://doi.org/10.1038/ncomms7544 CrossRefGoogle Scholar
  13. 13.
    Lukatskaya MR, Kota S, Lin Z, Zhao MQ, Shpigel N, Levi MD, Halim J, Taberna PL, Barsoum WP, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2:17105.  https://doi.org/10.1038/nenergy.2017.105 CrossRefGoogle Scholar
  14. 14.
    Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27:339–345CrossRefGoogle Scholar
  15. 15.
    Xia Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou Z, Yang S (2018) Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557:409–412CrossRefGoogle Scholar
  16. 16.
    Tang Y, Zhu J, Yang C, Wang F (2016) Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J Alloys Compd 685:194–201CrossRefGoogle Scholar
  17. 17.
    Zou R, Quan H, Pan M, Zhou S, Chen D, Luo X (2018) Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim Acta 292:31–38CrossRefGoogle Scholar
  18. 18.
    Wang F, Cao M, Qin Y, Zhu J, Wang L, Tang Y (2016) ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Adv 6:88934–88942CrossRefGoogle Scholar
  19. 19.
    Dall’Agnese Y, Rozier P, Taberna PL, Gogotsi Y, Simon P (2016) Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sources 306:510–515CrossRefGoogle Scholar
  20. 20.
    Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, Huang Y, Wang Z, Li H, Huang Q, Zhi C (2016) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6:1600969.  https://doi.org/10.1002/aenm.201600969 CrossRefGoogle Scholar
  21. 21.
    Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28:1517–1522CrossRefGoogle Scholar
  22. 22.
    Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suárez AM, Babak A, Alshareef HN, Gogotsi Y (2018) Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater 4:1700339.  https://doi.org/10.1002/aelm.201700339 CrossRefGoogle Scholar
  23. 23.
    Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264.  https://doi.org/10.1002/adfm.201701264 CrossRefGoogle Scholar
  24. 24.
    Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y (2018) Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10:5906–5913CrossRefGoogle Scholar
  25. 25.
    Dall’Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P (2014) High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 48:118–122CrossRefGoogle Scholar
  26. 26.
    Zhang P, Zhu Q, Guan Z, Zhao Q, Sun N, Xu B (2019) Flexible Si@C electrode with excellent stability employing MXene as a multi-functional binder for lithium ion batteries. Chemsuschem.  https://doi.org/10.1002/cssc.201901497 Google Scholar
  27. 27.
    Yu S, Sun N, Hu L, Wang L, Zhu Q, Guan Y, Xu B (2018) Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. J Power Sources 405:132–141CrossRefGoogle Scholar
  28. 28.
    Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716.  https://doi.org/10.1038/ncomms2664 CrossRefGoogle Scholar
  29. 29.
    Hu M, Li Z, Hu T, Zhu S, Zhang C, Wang X (2016) High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10:11344–11350CrossRefGoogle Scholar
  30. 30.
    Hu L, Zhu Q, Wu Q, Li D, An Z, Xu B (2018) Natural biomass-derived hierarchical porous carbon synthesized by in situ hard template coupled with NaOH activation for ultra-high rate supercapacitors, ACS Sustain. Chem Eng 6:13949–13959Google Scholar
  31. 31.
    Yu S, Wang H, Hu C, Zhu Q, Qiao N, Xu B (2016) Facile synthesis of nitrogen-doped, hierarchical porous carbon with high surface area: activation effect of nano-ZnO template. J Mater Chem A 4:16341–16348CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations