Skip to main content

Advertisement

Log in

Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MXenes are 2D transition metal carbides or nitrides with high electrical conductivity that have attracted great attention as promising electrode materials that supersede carbon-based material designed for supercapacitors. However, the aggregation and self-restacking of MXene 2D nanosheets limit their high-rate performance. In this work, flexible and conductive Ti3C2Tx MXene/carbon nanotubes (CNTs) composite film was prepared through a simple vacuum filtration of the Ti3C2Tx MXene and CNTs suspension mixture. The CNTs integrated MXene nanosheets can effectively prevent the restacking while creating fast ion transport channels for enhanced capacitance. The designed films exhibit excellent performance as supercapacitor electrodes with high capacitance of 300 F g−1 at 1 A g−1 with superior rate performance of 199 F g−1 even at 500 A g−1, together with excellent cyclic stability of 92% capacitance retention after 10000 cycles at 20 A g−1. The excellent workability demonstrates potential application of the system for flexible, portable and highly integrated supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098. https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  Google Scholar 

  2. Li R, Zhang L, Shi L, Wang P (2017) MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11:3752–3759

    Article  CAS  Google Scholar 

  3. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Article  CAS  Google Scholar 

  4. Liu H, Zhang X, Zhu Y, Cao B, Zhu Q, Zhang P, Xu B, Wu F, Chen R (2019) Electrostatic self-assembly of 0D–2D SnO2 quantum dot/Ti3C2Tx MXene hybrids as anode for lithium ion batteries. Nano Micro Lett 11:65

    Article  Google Scholar 

  5. Luo J, Tao X, Zhang J, Xia Y, Zhang W (2016) Se4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499

    Article  CAS  Google Scholar 

  6. Liu Y, Zhang P, Sun N, Anasori B, Zhu Q, Liu H, Gogotsi Y, Xu B (2018) Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 30:1707334. https://doi.org/10.1002/adma.201707334

    Article  CAS  Google Scholar 

  7. Xiong D, Li X, Bai Z, Lu S (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14:1703419. https://doi.org/10.1002/smll.201703419

    Article  CAS  Google Scholar 

  8. Zhao Q, Zhu Q, Miao J, Zhang P, Xu B (2019) 2D MXene nanosheets enable small-sulfur electrode to be flexible for lithium-sulfur batteries. Nanoscale 11:8442–8448

    Article  CAS  Google Scholar 

  9. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    Article  CAS  Google Scholar 

  10. Zhang X, Zhang Z, Zhou Z (2018) MXene-based materials for electrochemical energy storage. J Energy Chem 27:73–85

    Article  Google Scholar 

  11. Yu L, Hu L, Anasori B, Liu Y, Zhu Q, Zhang P, Gogotsi Y, Xu B (2018) MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett 3:1597–1603

    Article  CAS  Google Scholar 

  12. Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A (2015) Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun 6:6544. https://doi.org/10.1038/ncomms7544

    Article  CAS  Google Scholar 

  13. Lukatskaya MR, Kota S, Lin Z, Zhao MQ, Shpigel N, Levi MD, Halim J, Taberna PL, Barsoum WP, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2:17105. https://doi.org/10.1038/nenergy.2017.105

    Article  CAS  Google Scholar 

  14. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27:339–345

    Article  CAS  Google Scholar 

  15. Xia Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou Z, Yang S (2018) Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557:409–412

    Article  CAS  Google Scholar 

  16. Tang Y, Zhu J, Yang C, Wang F (2016) Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J Alloys Compd 685:194–201

    Article  CAS  Google Scholar 

  17. Zou R, Quan H, Pan M, Zhou S, Chen D, Luo X (2018) Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim Acta 292:31–38

    Article  CAS  Google Scholar 

  18. Wang F, Cao M, Qin Y, Zhu J, Wang L, Tang Y (2016) ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Adv 6:88934–88942

    Article  CAS  Google Scholar 

  19. Dall’Agnese Y, Rozier P, Taberna PL, Gogotsi Y, Simon P (2016) Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sources 306:510–515

    Article  Google Scholar 

  20. Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, Huang Y, Wang Z, Li H, Huang Q, Zhi C (2016) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6:1600969. https://doi.org/10.1002/aenm.201600969

    Article  CAS  Google Scholar 

  21. Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28:1517–1522

    Article  CAS  Google Scholar 

  22. Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suárez AM, Babak A, Alshareef HN, Gogotsi Y (2018) Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater 4:1700339. https://doi.org/10.1002/aelm.201700339

    Article  CAS  Google Scholar 

  23. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264. https://doi.org/10.1002/adfm.201701264

    Article  CAS  Google Scholar 

  24. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y (2018) Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10:5906–5913

    Article  CAS  Google Scholar 

  25. Dall’Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P (2014) High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 48:118–122

    Article  Google Scholar 

  26. Zhang P, Zhu Q, Guan Z, Zhao Q, Sun N, Xu B (2019) Flexible Si@C electrode with excellent stability employing MXene as a multi-functional binder for lithium ion batteries. Chemsuschem. https://doi.org/10.1002/cssc.201901497

    Article  Google Scholar 

  27. Yu S, Sun N, Hu L, Wang L, Zhu Q, Guan Y, Xu B (2018) Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. J Power Sources 405:132–141

    Article  CAS  Google Scholar 

  28. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716. https://doi.org/10.1038/ncomms2664

    Article  CAS  Google Scholar 

  29. Hu M, Li Z, Hu T, Zhu S, Zhang C, Wang X (2016) High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10:11344–11350

    Article  CAS  Google Scholar 

  30. Hu L, Zhu Q, Wu Q, Li D, An Z, Xu B (2018) Natural biomass-derived hierarchical porous carbon synthesized by in situ hard template coupled with NaOH activation for ultra-high rate supercapacitors, ACS Sustain. Chem Eng 6:13949–13959

    CAS  Google Scholar 

  31. Yu S, Wang H, Hu C, Zhu Q, Qiao N, Xu B (2016) Facile synthesis of nitrogen-doped, hierarchical porous carbon with high surface area: activation effect of nano-ZnO template. J Mater Chem A 4:16341–16348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, 51572011 and 51802012) and the National Key Research and Development Program of China (2017YFB0102204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yu, L., Lin, Z. et al. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. J Mater Sci 55, 1148–1156 (2020). https://doi.org/10.1007/s10853-019-04003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04003-8

Navigation