Skip to main content

Advertisement

Log in

From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li–S batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reproducible massive biochar with low cost has attracted great attentions due to their potential applications in the future environment and energy. In this work, a nitrogen-doped 3D porous agaric carbon (N-AC) with high specific surface area (1568.2 m2 g−1) was fabricated without adding any activator by using the agaric hydrogel as a precursor. And when employed as a sulfur host, the resulted N-AC–sulfur composite electrode with 60 wt% sulfur content illustrates a high reversible capacity of 875 mAh g−1 at 0.2 C (1 C = 1675 mA g−1) over 100 cycles as well as an excellent rate capability of 620 mAh g−1 at 2 C. Such excellent electrochemical performances could attribute to (1) the conductive carbon skeleton of N-AC that provides rapid electron/ion transfer; (2) abundant pores range from micropores to macropores in N-AC that are beneficial to accommodating the active sulfur and polysulfides and (3) the nitrogen dopants that provide polarized sites in chemical binding of polysulfides. In a word, this work provides a compelling avenue to the design of multifunctional sulfur host for advanced Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Google Scholar 

  2. Younesi R, Veith GM, Johansson P, Edström K, Vegge T (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8:1905–1922

    CAS  Google Scholar 

  3. Dai H, Xi K, Liu X, Lai C, Zhang S (2018) Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J Am Chem Soc 140:17515–17521

    CAS  Google Scholar 

  4. Li C, Li J, Zhang Y, Cui X, Lei H, Li G (2019) Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries. J Mater Sci 54:5641–5657. https://doi.org/10.1007/s10853-018-03229-2

    Article  CAS  Google Scholar 

  5. Gu X, Lai C (2019) One dimensional nanostructures contribute better Li–S and Li–Se batteries: progress, challenges and perspectives. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.05.013

    Article  Google Scholar 

  6. Gu X, Tang T, Liu X, Hou Y (2019) Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. J Mater Chem A 7:11566–11583

    CAS  Google Scholar 

  7. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    CAS  Google Scholar 

  8. Walle MD, Zhang Z, Zhang M, You X, Li Y, Liu YN (2018) Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries. J Mater Sci 53:2685–2696. https://doi.org/10.1007/s10853-017-1678-1

    Article  CAS  Google Scholar 

  9. Duan L, Zhao L, Cong H, Zhang X, Lu W, Xue C (2019) Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li–S batteries. Small 15:1804347–1804354

    Google Scholar 

  10. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506

    CAS  Google Scholar 

  11. Liang S, Liang C, Xia Y et al (2016) Facile synthesis of porous Li2S@C composites as cathode materials for lithium–sulfur batteries. J Power Sources 306:200–207

    CAS  Google Scholar 

  12. Cheng XB, Huang JQ, Zhang Q, Peng HJ, Zhao MQ, Wei F (2014) Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4:65–72

    CAS  Google Scholar 

  13. Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew Chem Int Ed Engl 124:9730–9733

    Google Scholar 

  14. Zhou G, Li L, Ma C et al (2015) A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11:356–365

    CAS  Google Scholar 

  15. Zhang J, Cai Y, Zhong Q, Lai D, Yao J (2015) Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium–sulfur batteries. Nanoscale 7:17791–17797

    CAS  Google Scholar 

  16. Song RS, Wang B, Ruan TT et al (2018) A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium–sulfur battery. Appl Surf Sci 472:396–404

    Google Scholar 

  17. Gu X, Xin L, Li Y, Dong F, Fu M, Hou Y (2018) Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer. Nano-Micro Lett 10:59–68

    Google Scholar 

  18. Gu X, Wang Y, Lai C et al (2015) Microporous bamboo biochar for lithium–sulfur batteries. Nano Res 8:129–139

    CAS  Google Scholar 

  19. Yang K, Gao Q, Tan Y et al (2016) Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium-sulfur batteries. Chem Eur J 22:3239–3244

    CAS  Google Scholar 

  20. Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in Li/S batteries. J Alloys Compd 619:298–302

    CAS  Google Scholar 

  21. Zhao S, Li C, Wang W et al (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334–3339

    CAS  Google Scholar 

  22. Yao H, Zheng G, Li W et al (2013) Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett 13:3385–3390

    CAS  Google Scholar 

  23. Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energy Environ Sci 4:736–740

    CAS  Google Scholar 

  24. Yuan H, Liu T, Liu Y et al (2019) A review of biomass materials for advanced lithium–sulfur batteries. Chem Sci 10:7484–7495

    CAS  Google Scholar 

  25. Gu X, Lai C, Liu F, Yang W, Hou Y, Zhang S (2015) A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. J Mater Chem A 3:9502–9509

    CAS  Google Scholar 

  26. Zhao Q, Zhu Q, An Y et al (2018) A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-suflur batteries. Appl Surf Sci 440:770–777

    CAS  Google Scholar 

  27. Li D, Chang G, Zong L et al (2019) From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater 17:22–30

    CAS  Google Scholar 

  28. Zhu Z, Liu Y, Ju Z et al (2019) Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH. ACS Appl Mater Interfaces 11:24205–24211

    CAS  Google Scholar 

  29. Ma J, Qiao Z, Xiang X (2011) Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities. Carbohydr Polym 84:1061–1068

    CAS  Google Scholar 

  30. Zhu X, Xu Y, Li D, Zhao N, Gong J (2018) Correlation of the antioxidant activity and of polysaccharides from auricularia auricula with its molecular weight and extracting agent properties. Mod Food Sci Technol 34:59–67

    Google Scholar 

  31. Gu X, Tong CJ, Rehman S, Liu LM, Hou Y, Zhang S (2016) Multifunctional nitrogen-doped loofah sponge carbon blocking layer for high-performance rechargeable lithium batteries. ACS Appl Mater Interfaces 8:15991–16001

    CAS  Google Scholar 

  32. Gu X, Tong CJ, Lai C et al (2015) Porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J Mater Chem A 3:16670–16678

    CAS  Google Scholar 

  33. Lai C, Wu Z, Gu X et al (2015) Reinforced conductive confinement of sulfur for robust and high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 7:23885–23892

    CAS  Google Scholar 

  34. Liang C, Liang S, Xia Y et al (2017) H2O-induced self-propagating synthesis of hierarchical porous carbon: a promising lithium storage material with superior rate capability and ultra-long cycling life. J Mater Chem A 5:18221–18229

    CAS  Google Scholar 

  35. Liang C, Liang S, Xia Y et al (2018) Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage. Green Chem 20:1484–1490

    CAS  Google Scholar 

  36. Hencz L, Gu X, Zhou X, Martens W, Zhang S (2017) Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. J Mater Sci 52:12336–12347. https://doi.org/10.1007/s10853-017-1288-y

    Article  CAS  Google Scholar 

  37. Zhong Y, Chao D, Deng S et al (2018) Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv Funct Mater 28:1706391–1706399

    Google Scholar 

  38. Peng HJ, Xu WT, Zhu L et al (2016) 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv Funct Mater 26:6351–6358

    CAS  Google Scholar 

  39. Rehman S, Gu X, Khan K et al (2016) 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium–sulfur batteries. Adv Energy Mater 6:1502518

    Google Scholar 

  40. Li GR, Ling M, Ye YF et al (2015) Acacia senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries. Adv Energy Mater 5:1500878–1500885

    Google Scholar 

  41. Huang M, Yang J, Xi B et al (2018) Enhancing kinetics of Li–S batteries by graphene-like N, S-codoped biochar fabricated in NaCl non-aqueous ionic liquid. Sci China Mater 62:455–464

    Google Scholar 

  42. Pang Q, Tang J, Huang H et al (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater 27:6021–6028

    CAS  Google Scholar 

  43. Liu QC, Xu JJ, Xu D, Zhang XB (2015) Flexible lithium–oxygen battery based on a recoverable cathode. Nat Commun 6:7892–7899

    CAS  Google Scholar 

  44. Liao F, Światowska J, Maurice V et al (2014) Ageing mechanisms of conversion-type electrode material studied on iron sulfide thin films. Electrochim Acta 120:359–368

    CAS  Google Scholar 

  45. Eshetu GG, Judez X, Li C et al (2017) Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed Engl 56:15368–15372

    CAS  Google Scholar 

  46. Sun Y, Li Y, Sun J, Li Y, Pei A, Cui Y (2017) Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Mater 6:119–124

    Google Scholar 

  47. Ma JL, Bao D, Shi M-M, Yan JM, Zhang XB (2017) Reversible nitrogen fixation based on a rechargeable lithium–nitrogen battery for energy storage. Chem 2:525–532

    CAS  Google Scholar 

  48. Pei F, Lin L, Fu A et al (2018) A two-dimensional porous carbon-modified separator for high-energy-density Li–S batteries. Joule 2:323–336

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51902036, 51808080), Natural Science Foundation of Chongqing Science & Technology Commission (No. cstc2019jcyj-msxm1407), the Venture & Innovation Support Program for Chongqing Overseas Returnees (Grant No. CX2018129), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800808), the Start-up Foundation of High-level Talents in Chongqing Technology and Business University (Grant No.1856008) and Open Research Fund of Chongqing Key Laboratory of Catalysis and New Environmental Materials (Grant No. KFJJ2018082). Dr. Liu also wanted to thank the financial support from the Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/S032886/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingxing Gu or Xiaoteng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Li, H., Wen, H. et al. From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li–S batteries. J Mater Sci 55, 1136–1147 (2020). https://doi.org/10.1007/s10853-019-03999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03999-3

Navigation