Skip to main content
Log in

Theoretical study of the effect of isomorphous substitution by \(\hbox {Al}^{3+}\) and/or \(\hbox {Fe}^{3+}\) cations to tetrahedral positions in the framework of a zeolite with erionite topology

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The isomorphous substitution of \(\hbox {Al}^{3+}\) and/or \(\hbox {Fe}^{3+}\) cations into the erionite zeolite framework were studied through periodic density functional theory computations. Taking as reference the Mulliken charges for siliceous framework computed in previous work (Antúnez-García et al. in J Mol Struct 1059:232–238, 2014), the present results show that the basicity of ERI zeolite increases when those cations are introduced into the framework. It was also observed that when at least two \(\hbox {Si}^{4+}\) cations are isomorphically substituted by \(\hbox {Fe}^{3+}\) in the unit cell of the erionite zeolite, it acquires magnetic properties. The results show that a specific net-spin polarization (up or down) could be correlated with particular configurations of erionite zeolite, containing ferric iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use, 3rd edn. Willey, New York

    Google Scholar 

  2. Vansant E (1988) Pore size engineering in zeolites. Stud Surf Sci Catal 37:143–153

    Article  Google Scholar 

  3. McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  4. Breck DW, Smith JV (1959) Molecular sieves. Sci Am 200:85–96

    Article  Google Scholar 

  5. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268

    Article  Google Scholar 

  6. Shi J, Wang Y, Yang W, Tang Y, Xie Z (2015) Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chem Soc Rev 44:8877–8903

    Article  Google Scholar 

  7. Townsend RP, Coker EN (2001) In: van Bekkum H, Flanigen E, Jacobs P, Jansen J (eds) Introduction to zeolite science and practice, vol 137. Studies in surface science and catalysis. Elsevier, Amsterdam, pp 467–524

  8. Busca G (2017) Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater 254:3–16

    Article  Google Scholar 

  9. Heidler R, Janssens GO, Mortier WJ, Schoonheydt RA (1996) Charge sensitivity analysis of intrinsic basicity of faujasite-type zeolites using the Electronegativity Equalization Method (EEM). J Phys Chem 100:19728–19734

    Article  Google Scholar 

  10. Barthomeuf D, Mallmann AD (1988) Basicity and electronegativity of zeolites. Stud Surf Sci Catal 37:365–374

    Article  Google Scholar 

  11. Barthomeuf D (2003) Framework induced basicity in zeolites. Microporous Mesoporous Mater 66:1–14

    Article  Google Scholar 

  12. Yang C, He N, Xu Q (1999) Effect of trivalent elements in the framework on the basicity of zeolites. Stud Surf Sci Catal 125:457–464

    Article  Google Scholar 

  13. Kumar R, Ratnasamy P (1991) Synthesis and characterisation of ferrisilicate zeolites. Stud Surf Sci Catal 60:43–52

    Article  Google Scholar 

  14. Ratnasamy P, Kumar R (1991) Ferrisilicate analogs of zeolites. Catal Today 9:329–416

    Article  Google Scholar 

  15. Meng L, Zhu X, Mezari B, Pestman R, Wannapakdee W, Hensen EJM (2017) On the role of acidity in bulk and nanosheet [T]MFI (T=\({\text{ Al }}^{3+}\), \({\text{ Ga }}^{3+}\), \({\text{ Fe }}^{3+}\), \({\text{ B }}^{3+}\)) zeolites in the methanol-to-hydrocarbons reaction. Chem Cat Chem 23:3942–3954

    Google Scholar 

  16. Jiang X, Su X, Bai X, Li Y, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2018) Conversion of methanol to light olefins over nanosized [Fe, Al]ZSM-5 zeolites: influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous Mesoporous Mater 263:243–250

    Article  Google Scholar 

  17. Diallo MM, Laforge S, Pouilloux Y, Mijoin J (2018) Highly efficient dehydration of glycerol to acrolein over isomorphously substituted Fe-MFI zeolites. Catal Lett 148:2283–2303

    Article  Google Scholar 

  18. Naraki Y, Ariga K, Oka H, Kurashige H, Sano T (2018) An isomorphously substituted Fe-BEA zeolite with high Fe content: facile synthesis and characterization. J Nanosci Nanotechnol 18:11–19

    Article  Google Scholar 

  19. Bogomolov VN, Zadorozhnii AI, Panina LK, Petranovskii VP (1980) Transition of 13-atom, mercury clusters to a strongly paramagnetic state under the action of magnetic field. JETP Lett 31:339–342

    Google Scholar 

  20. Pierella LB, Saux C, Caglieri SC, Bertorello HR, Berco PG (2008) Catalytic activity and magnetic properties of Co-ZSM-5 zeolites prepared by different methods. Appl Catal A 347:55–61

    Article  Google Scholar 

  21. Antúnez-García J, Posada-Amarillas A, Galván DH, Smolentseva E, Petranovskii V, Fuentes Moyado S (2016) DFT study of composites formed by \({\text{ M }}_{2}\) metallic clusters (\({\text{ M }}={\text{ Ni }}\), Cu, Fe and Cu) in faujasite. RSC Adv 6:79160–79165

    Article  Google Scholar 

  22. Rao BK, Jena P (1985) Physics of small metal clusters: topology, magnetism, and electronic structure. Phys Rev B 32:2058–2069

    Article  Google Scholar 

  23. Nozue Y, Kodaira T, Goto T (1992) Ferromagnetism of potassium clusters incorporated into zeolite LTA. Phys Rev Lett 68:3789–3792

    Article  Google Scholar 

  24. Nozue Y, Kodaira T, Goto T (1992) Ferromagnetic properties of potassium clusters incorporated into zeolite LTA. Phys Rev Lett 48:12253–12261

    Google Scholar 

  25. Kelly MJ (1995) A model electronic structure for metal-intercalated zeolites. J Phys Condens Matter 7:5507–5519

    Article  Google Scholar 

  26. Nakano T, Ikemoto Y, Nozue Y (1999) Ferromagnetism and paramagnetism in potassium clusters incorporated in zeolite LTA. Eur Phys J D 9:505–508

    Article  Google Scholar 

  27. Hanh DT, Nakano T, Nozue Y (2010) Strong dependence of ferrimagnetic properties on Na concentration in Na-K alloy clusters incorporated in low-silica X zeolite. J Phys Chem Solids 71:677–680

    Article  Google Scholar 

  28. Igarashi M, Nakano T, Thi PT, Nozue Y, Goto A, Hashi K, Ohki S, Shimizu T, Krajnc ACV, Jeglič P, Arčon D (2013) NMR study of thermally activated paramagnetism in metallic low-silica X zeolite filled with sodium atoms. Phys Rev B 87:075138. https://doi.org/10.1103/PhysRevB.87.075138

    Article  Google Scholar 

  29. Kien LM, Goto T, Hanh DT, Nakano T, Nozue Y (2015) Ferromagnetism of Na–K alloy clusters incorporated in zeolite low-silica X. J Phys Soc Jpn 84:064718. https://doi.org/10.7566/JPSJ.84.064718

    Article  Google Scholar 

  30. Nakano T, Nozue Y (2017) Electrons of alkali metals in regular nanospaces of zeolites. Adv Phys X 2:254–280

    Google Scholar 

  31. Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55:1790–1793

    Article  Google Scholar 

  32. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  Google Scholar 

  33. Wolf SA, Chtchelkanova AY, Treger DM (2006) Spintronics: a retrospective and perspective. IBM J Res Dev 50:101–110

    Article  Google Scholar 

  34. Kostyleva MP, Serga AA, Schneider T, Leven B, Hillebrands B (2005) Spin-wave logical gates. Appl Phys Lett 87:153501. https://doi.org/10.1063/1.2089147

    Article  Google Scholar 

  35. Gershenfeld NA, Chuang IL (1997) Bulk spin-resonance quantum computation. Science 275:350–356

    Article  Google Scholar 

  36. Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2011) Realizing all-spinbased logic operations atom by atom. Science 332:1062–1064

    Article  Google Scholar 

  37. Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL (2018) Malignant mesothelioma and its non-asbestos causes. Arch Pathol Lab Med 142:753–760

    Article  Google Scholar 

  38. Emri SA (2017) The Cappadocia mesothelioma epidemic: its influence in Turkey and abroad. Ann Transl Med. https://doi.org/10.21037/atm.2017.04.06

    Google Scholar 

  39. Klyueva NV, Tien ND, Ione KG (1985) Hydrocarbon synthesis from methanol on erionite and mordenite catalysts synthesized in the presence of \({\text{ B }}^{3+}\), \({\text{ Ga }}^{3+}\) or \({\text{ Fe }}^{3+}\). React Kinet Catal Lett 29:427–432

    Article  Google Scholar 

  40. Gualtieri AF, Gandol NB, Pollastri S, Pollok K, Langenhorst F (2016) Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Sci Rep 6:37981. https://doi.org/10.1038/srep37981

    Article  Google Scholar 

  41. Roque-Malherbe R, Díaz-Aguila C, Reguera-Ruíz E, Fundora-Lliteras J, López-Colado L, Hernández-Vélez M (1990) The state of iron in natural zeolites: a Mössbauer study. Zeolites 10:685–689

    Article  Google Scholar 

  42. Saini-Eidukat B, Triplett JW (2014) Erionite and offretite from the Killdeer Mountains, Dunn County, North Dakota, USA. Am Miner 99:8–15

    Article  Google Scholar 

  43. Derouane EG, Vedrine JC, Pinto RR, Borges PM, Costa L, Lemos M, Lemos F, Ribeiro FR (2013) The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal Rev Sci Eng 55:454–515

    Article  Google Scholar 

  44. Davis RJ (2000) Relationships between basicity and reactivity of zeolite catalysts. Res Chem Intermed 26:21–27

    Article  Google Scholar 

  45. Chen F, Zhang L, Feng G, Wang X, Zhang R, Liu J (2018) Trivalent ions modification for high-silica mordenite: a first principles study. Appl Surf Sci 433:627–638

    Article  Google Scholar 

  46. Nicholas J (1997) Density functional theory studies of zeolite structure, acidity, and reactivity. Topics Catal 4:157–171

    Article  Google Scholar 

  47. Zhou D, Bao Y, Yang M, He N, Yang G (2006) DFT studies on the location and acid strength of Brönsted acid sites in MCM-22 zeolite. J Mol Catal A 244:11–19

    Article  Google Scholar 

  48. Liu C, Traca I, van Santen RA, Hensen EJM, Pidko EA (2017) Scaling relations for acidity and reactivity of zeolites. J Phys Chem C Nanomater Interfaces 121:23520–23530

    Article  Google Scholar 

  49. Niwa M, Sususki K, Morishita N, Sastre G, Okumura K, Katada N (2013) Dependence of cracking activity on the Brøsted acidity of Y zeolite: DFT study and experimental confirmation. Catal Sci Technol 3:1919–1927

    Article  Google Scholar 

  50. Antúnez-García J, Galván DH, Posada-Amarillas A, Petranovskii V (2014) A theoretical study of Cu clusters in siliceous erionite. J Mol Struct 1059:232–238

    Article  Google Scholar 

  51. Löwenstein S (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39:92–96

    Google Scholar 

  52. Antúnez-García J, Galván DH, Petranovskii V, Posada-Amarillas A (2015) A DFT study of copper-oxide clusters embedded in dry and water-immerse mordenite. Comput Mater Sci 106:140–148

    Article  Google Scholar 

  53. Deka RC, Roy RK, Hirao K (2000) Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard-soft acid-base approach. Chem Phys Lett 332:576–582

    Article  Google Scholar 

  54. Barthomeuf D (2006) Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev Sci Eng 38:521–612

    Article  Google Scholar 

  55. Bandyopadhyay S, Cahay M (2009) Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology 20:412001. https://doi.org/10.1088/0957-4484/20/41/412001

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project SENER-CONACyT 117373, UNAM PAPIIT IN107817 Grant and RFBR-CITMA Project No. 18-53-34004 and through the basic-science proposal A1-S-33492. We also want to thank for the supercomputing time provided by the UNAM through the project LANCAD-UNAM-DGTIC-041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Antúnez-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antúnez-García, J., Galván, D.H., Petranovskii, V. et al. Theoretical study of the effect of isomorphous substitution by \(\hbox {Al}^{3+}\) and/or \(\hbox {Fe}^{3+}\) cations to tetrahedral positions in the framework of a zeolite with erionite topology. J Mater Sci 54, 13190–13199 (2019). https://doi.org/10.1007/s10853-019-03845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03845-6

Navigation