Skip to main content
Log in

Enhanced electroluminescent performance by doping organic conjugated ionic compound into graphene oxide hole-injecting layer

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic conjugated ionic compound 10,10′-dimethyl-9,9′-biacridinum bis(monomethyl terephthalate) (MMT) is doped into graphene oxide (GO) hole-injecting layer to enhance the electroluminescent performance of organic light-emitting diodes (OLEDs). The composite films are characterized in detail by FTIR, SEM, XPS, and UPS. The XPS result indicates the evident ππ stacking interaction between the conjugated structures of GO and MMT. The UPS result shows the decrease in ionization potential of GO due to MMT-doping. As a result, at the optimal doping ratio of 4 wt%, the maximum luminous efficiency of OLEDs is increased to 15.46 cd/A, which is 3.4 times as 4.55 cd/A of the control device. Besides, the luminance is also enhanced to 19950 cd/m2, while the turn-on voltage is decreased to 2.5 V. Doping organic conjugated ionic compound into the GO hole-injecting layer is a facile and efficient approach to improve the electroluminescent performance of OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107(4):1233–1271

    Article  CAS  Google Scholar 

  2. Liam SCP, MacLeod BA, Ginger DS (2008) The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport. J Phys Chem C 112(21):7922–7927

    Article  Google Scholar 

  3. Hau SK, Yip HL, Zou JY, Jen AK (2009) Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Org Electron 10(7):1401–1407

    Article  CAS  Google Scholar 

  4. Wong KW, Yip HL, Luo Y, Wong KY, Lau KM, Chow HF, Gao ZQ, Yeung WL, Chang CC (2002) Blocking reactions between indium–tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer. Appl Phys Lett 80(15):2788–2790

    Article  CAS  Google Scholar 

  5. Kion N, Morton VM, Suren VG, Frederik CK (2010) Degradation patterns in water and oxygen of an inverted polymer solar cell. J Am Chem Soc 47(132):16883–16892

    Google Scholar 

  6. Li SS, Tu KH, Lin CC, Chen CW, Manish C (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cell. ACS Nano 4(6):3169–3174

    Article  CAS  Google Scholar 

  7. Lee BR, Kim J, Kang D, Lee DW, Ko SJ, Lee HJ, Lee CL, Kim JY, Shin HC, Song MH (2012) Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer. ACS Nano 6(4):2984–2991

    Article  CAS  Google Scholar 

  8. Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 9(5):683–696

    Article  Google Scholar 

  9. Liu CC, Xu JK, Lu BY, Yue RR, Kong FF (2012) Simultaneous increases in electrical conductivity and Seebeck coefficient of PEDOT:PSS films by adding ionic liquids into a polymer solution. J Electron Mater 41(4):639–645

    Article  CAS  Google Scholar 

  10. Lee SK, Lee KK (2010) Conductivity enhancement of PEDOT:PSS films with ionic liquids as dopants. Adv Mater Res 93–94:501–504

    Article  Google Scholar 

  11. Döbbelin M, Marcilla R, Salsamendi M, Pozo-Gonzalo C, Carrasco PM, Pomposo JA, Mecerreyes D (2007) Influnce of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films. Chem Mater 19(9):2147–2149

    Article  Google Scholar 

  12. Chantal B, Ludovic M, Ahmed MA, Lawrence AH (2012) Highly conductive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv Funct Mater 22:2723–2727

    Article  Google Scholar 

  13. Liu YL, Zhao Y, Xu SG, Cao SK (2015) Enhanced electroluminescent efficiency with ionic liquid doped into PEDOT:PSS hole-injecting layer. Polymer 77:42–47

    Article  CAS  Google Scholar 

  14. Li CT, Lee CP, Fan MS, Chen PY, Vittal R, Ho KC (2014) Ionic liquid-doped poly(3,4-ethylenedioxy thiophene) counter electrodes for dye-sensitized solar cells: cationic and anionic effects on the photovoltaic performance. Nano Energy 9:1–14

    Article  Google Scholar 

  15. Balandin AA, Ghosh S, Bao W, Calizo A, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  16. Lee C, Wei X, Kysar JW, Honen J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  17. Cheng TC, Ku TA, Huang KY, Chou AS, Chang PH, Chao C, Yue CF, Liu CW, Wang PH, Wong KT, Wu CI (2018) Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs. J Appl Phys 123(2):024303(1–7)

    Article  Google Scholar 

  18. Kim DH, Kim TW (2018) Highly-efficient organic light-emitting devices based on poly(N, N′-bis-4-butylphenyl-N, N′-bisphenyl) benzidine: octadecylamine-graphene quantum dots. Org Electron 57:305–310

    Article  CAS  Google Scholar 

  19. Jesuraj PJ, Parameshwari R, Kanthasamy K, Koch J, Pfnür H, Jeganathan K (2017) Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide. Appl Surf Sci 397:144–151

    Article  CAS  Google Scholar 

  20. Dou L, Cui F, Yu Y, Khanarian G, Eaton SW, Yang Q, Resasco J, Schildknecht C, Schierle-Arndt K, Yang P (2016) Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors. ACS Nano 10:2600–2606

    Article  CAS  Google Scholar 

  21. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2016) Recent advances in graphene based gas sensors. Sens Actuators B Chem 218:160–183

    Article  Google Scholar 

  22. Kim Y, Lee EY, Lee HH, Seo TS (2017) Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Appl Mater Interfaces 9:16375–16380

    Article  CAS  Google Scholar 

  23. Hou ZQ, Wang ZY, Yang LX (2017) Nitrogen-doped reduced graphene oxide intertwined with V2O3 nanoflakes as self-supported electrodes for flexible all-solid-state supercapacitors. RSC Adv 7:25732–25739

    Article  CAS  Google Scholar 

  24. Rafique S, Abdullah SM, Shahid MM, Ansari MO, Sulaiman K (2017) Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT:PSS double decked hole transport layer. Sci Rep 7:39555

    Article  CAS  Google Scholar 

  25. Hafsi B, Boubaker A, Guerin D, Lenfant S, Kalboussi A, Lmimouni K (2017) N-type polymeric organic flash memory device: effect of reduced graphene oxide floating gate. Org Electron 45:81–88

    Article  CAS  Google Scholar 

  26. Gao Y, Yip HL, Chen KS, O’Malley KM, Acton O, Sun Y, Ting G, Chen H, Jen AKY (2011) Surface doping of conjugated polymers by graphene oxide and its application for organic electronic device. Adv Mater 23:1903–1908

    Article  CAS  Google Scholar 

  27. Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432

    Article  Google Scholar 

  28. Ruben R, Juan IP, Silvia VR, Amelia MA, Juan MDT (2013) Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Res 6:216–233

    Article  Google Scholar 

  29. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  30. Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan DD, Lin HQ, Miao MS (2018) Reactivity of He with ionic compounds under high pressure. Nat Commun 9:951

    Article  Google Scholar 

  31. Xu Z, Chen LM, Chen MH (2009) Energy level alignment of poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction. Appl Phys Lett 95:013301

    Article  Google Scholar 

  32. Rebeca M, David M, Gustaf W, Sergio B, Maria MRY, Franco C (2010) Light-emitting electrochemical cells using polymeric ionic liquid_polyfluorene blends as luminescent material. Appl Phys Lett 96:043308

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC; Grant Nos. U1304212, 21274133, 20774088 and 21374106) and the Development Foundation for Distinguished Junior Researchers at Zhengzhou University (Grant No. 1421320043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingliang Liu or Shaokui Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Liu, J., Zhang, B. et al. Enhanced electroluminescent performance by doping organic conjugated ionic compound into graphene oxide hole-injecting layer. J Mater Sci 54, 12688–12697 (2019). https://doi.org/10.1007/s10853-019-03820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03820-1

Navigation